These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 6508127

  • 1. Neurotrophic interactions during in vitro development of the inner ear.
    Van de Water TR, Ruben RJ.
    Ann Otol Rhinol Laryngol; 1984; 93(6 Pt 1):558-64. PubMed ID: 6508127
    [Abstract] [Full Text] [Related]

  • 2. A possible embryonic mechanism for the establishment of innervation of inner ear sensory structures.
    Van De Water TR, Ruben RJ.
    Acta Otolaryngol; 1983; 95(5-6):470-9. PubMed ID: 6880656
    [Abstract] [Full Text] [Related]

  • 3. Effects of removal of the statoacoustic ganglion complex upon the growing otocyst.
    Van De Water TR.
    Ann Otol Rhinol Laryngol; 1976; 85(6 Suppl 33 Pt 2):2-31. PubMed ID: 999150
    [Abstract] [Full Text] [Related]

  • 4. Determinants of ganglion-receptor cell interaction during development of the inner ear. A heterochronic ganglia study.
    Van de Water TR, Galinovic-Schwartz V, Rubin RJ.
    Acta Otolaryngol; 1989; 108(3-4):227-37. PubMed ID: 2816337
    [Abstract] [Full Text] [Related]

  • 5. Dysmorphogenesis of the inner ear: disruption of extracellular matrix (ECM) formation by an L-proline analog in otic explants.
    Van de Water TR, Galinovic-Schwartz V.
    J Craniofac Genet Dev Biol; 1986; 6(2):113-29. PubMed ID: 3722338
    [Abstract] [Full Text] [Related]

  • 6. The effect of target tissues on survival and differentiation of mammalian statoacoustic ganglion neurons in organ culture.
    Zhou XN, Van de Water TR.
    Acta Otolaryngol; 1987; 104(1-2):90-8. PubMed ID: 3661166
    [Abstract] [Full Text] [Related]

  • 7. Synaptogenesis in co-cultured inner ear explants which share a single statoacoustic ganglion.
    Anniko M, Van de Water TR.
    Acta Otolaryngol; 1986; 102(5-6):415-22. PubMed ID: 3788541
    [Abstract] [Full Text] [Related]

  • 8. In vitro development of the embryonic mouse inner ear following exposure to trypsin.
    Saver JL, Van de Water TR.
    J Exp Zool; 1984 Apr; 230(1):53-61. PubMed ID: 6610020
    [Abstract] [Full Text] [Related]

  • 9. [Organ culture system for inner ears].
    Zhou X, Van De Water TR.
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1989 Apr; 24(3):140-2, 189. PubMed ID: 2702004
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. In vitro differentiation of mouse embryo statoacoustic ganglion and sensory epithelium.
    Raymond J.
    Hear Res; 1987 Apr; 28(1):45-56. PubMed ID: 3610860
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Establishment of mice expressing EGFP in the placode-derived inner ear sensory cell lineage and FACS-array analysis focused on the regional specificity of the otocyst.
    Fujimoto C, Ozeki H, Uchijima Y, Suzukawa K, Mitani A, Fukuhara S, Nishiyama K, Kurihara Y, Kondo K, Aburatani H, Kaga K, Yamasoba T, Kurihara H.
    J Comp Neurol; 2010 Dec 01; 518(23):4702-22. PubMed ID: 20963824
    [Abstract] [Full Text] [Related]

  • 14. MicroRNA-194 Regulates the Development and Differentiation of Sensory Patches and Statoacoustic Ganglion of Inner Ear by Fgf4.
    Cao H, Shi J, Du J, Chen K, Dong C, Jiang D, Jiang H.
    Med Sci Monit; 2018 Mar 23; 24():1712-1723. PubMed ID: 29570699
    [Abstract] [Full Text] [Related]

  • 15. Critical periods of basic fibroblast growth factor and brain-derived neurotrophic factor in the development of the chicken cochleovestibular ganglion in vitro.
    Hossain WA, Rutledge A, Morest DK.
    Exp Neurol; 1997 Oct 23; 147(2):437-51. PubMed ID: 9344568
    [Abstract] [Full Text] [Related]

  • 16. Eya1 regulates the growth of otic epithelium and interacts with Pax2 during the development of all sensory areas in the inner ear.
    Zou D, Silvius D, Rodrigo-Blomqvist S, Enerbäck S, Xu PX.
    Dev Biol; 2006 Oct 15; 298(2):430-41. PubMed ID: 16916509
    [Abstract] [Full Text] [Related]

  • 17. Analysis of mouse kreisler mutants reveals new roles of hindbrain-derived signals in the establishment of the otic neurogenic domain.
    Vázquez-Echeverría C, Dominguez-Frutos E, Charnay P, Schimmang T, Pujades C.
    Dev Biol; 2008 Oct 01; 322(1):167-78. PubMed ID: 18703040
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Regulation of otic vesicle and hair cell stereocilia morphogenesis by Ena/VASP-like (Evl) in Xenopus.
    Wanner SJ, Miller JR.
    J Cell Sci; 2007 Aug 01; 120(Pt 15):2641-51. PubMed ID: 17635997
    [Abstract] [Full Text] [Related]

  • 20. Temporal pattern of nerve growth factor (NGF) binding in vivo and the in vitro effects of NGF on cultures of developing auditory and vestibular neurons.
    Lefebvre PP, Van de Water TR, Represa J, Liu W, Bernd P, Modlin S, Moonen G, Mayer MB.
    Acta Otolaryngol; 1991 Aug 01; 111(2):304-11. PubMed ID: 1648856
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.