These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1180 related items for PubMed ID: 6511912
1. Relationship of oxygen and glutathione in protection against carbon tetrachloride-induced hepatic microsomal lipid peroxidation and covalent binding in the rat. Rationale for the use of hyperbaric oxygen to treat carbon tetrachloride ingestion. Burk RF, Lane JM, Patel K. J Clin Invest; 1984 Dec; 74(6):1996-2001. PubMed ID: 6511912 [Abstract] [Full Text] [Related]
2. Reduced glutathione protection against rat liver microsomal injury by carbon tetrachloride. Dependence on O2. Burk RF, Patel K, Lane JM. Biochem J; 1983 Dec 01; 215(3):441-5. PubMed ID: 6318726 [Abstract] [Full Text] [Related]
3. Protection of hepatocytes with hyperoxia against carbon tetrachloride-induced injury. Bernacchi A, Myers R, Trump BF, Marzella L. Toxicol Pathol; 1984 Dec 01; 12(4):315-23. PubMed ID: 6533753 [Abstract] [Full Text] [Related]
4. Lipid peroxidation in purified plasma membrane fractions of rat liver in relation to the hepatoxicity of carbon tetrachloride. Le Page RN, Cheeseman KH, Osman N, Slater TF. Cell Biochem Funct; 1988 Apr 01; 6(2):87-99. PubMed ID: 2837346 [Abstract] [Full Text] [Related]
5. Covalent binding of carbon tetrachloride metabolites to the heme moiety of cytochrome P-450 and its degradation products. Fernández G, Villarruel MC, de Toranzo EG, Castro JA. Res Commun Chem Pathol Pharmacol; 1982 Feb 01; 35(2):283-90. PubMed ID: 7071415 [Abstract] [Full Text] [Related]
6. On the mechanisms of the CCl4-induced inhibition of liver cytochrome P-450. Ferrali M, Comporti M. Res Commun Chem Pathol Pharmacol; 1987 Jun 01; 56(3):375-86. PubMed ID: 3628967 [Abstract] [Full Text] [Related]
7. Studies on the mechanism of glutathione prevention of carbon tetrachloride-induced liver injury. Gorla N, de Ferreyra EC, Villarruel MC, de Fenos OM, Castro JA. Br J Exp Pathol; 1983 Aug 01; 64(4):388-95. PubMed ID: 6615708 [Abstract] [Full Text] [Related]
8. Possible mechanism of adenosine protection in carbon tetrachloride acute hepatotoxicity. Role of adenosine by-products and glutathione peroxidase. Chagoya de Sánchez V, Hernández-Muñoz R, Yáñez L, Vidrio S, Díaz-Muñoz M. J Biochem Toxicol; 1995 Feb 01; 10(1):41-50. PubMed ID: 7595931 [Abstract] [Full Text] [Related]
9. Protection against lipid peroxidation by a microsomal glutathione-dependent labile factor. Haenen GR, Bast A. FEBS Lett; 1983 Aug 08; 159(1-2):24-8. PubMed ID: 6873296 [Abstract] [Full Text] [Related]
10. The in vitro NADPH-dependent inhibition by CCl4 of the ATP-dependent calcium uptake of hepatic microsomes from male rats. Studies on the mechanism of the inactivation of the hepatic microsomal calcium pump by the CCl3.radical. Srivastava SP, Chen NQ, Holtzman JL. J Biol Chem; 1990 May 25; 265(15):8392-9. PubMed ID: 2140358 [Abstract] [Full Text] [Related]
11. Effect of oxygen tension on the generation of alkanes and malondialdehyde by peroxidizing rat liver microsomes. Reiter R, Burk RF. Biochem Pharmacol; 1987 Mar 15; 36(6):925-9. PubMed ID: 3566790 [Abstract] [Full Text] [Related]
12. Glutathione-dependent protection by rat liver microsomal protein against lipid peroxidation. Burk RF. Biochim Biophys Acta; 1983 May 04; 757(1):21-8. PubMed ID: 6838905 [Abstract] [Full Text] [Related]
13. Promethazine inhibits the formation of aldehydic products of lipid peroxidation but not covalent binding resulting from the exposure of rat liver fractions to CCl4. Poli G, Cheeseman KH, Biasi F, Chiarpotto E, Dianzani MU, Esterbauer H, Slater TF. Biochem J; 1989 Dec 01; 264(2):527-32. PubMed ID: 2604730 [Abstract] [Full Text] [Related]
14. Hyperbaric oxygen protection against carbon tetrachloride hepatotoxicity in the rat. Association with altered metabolism. Burk RF, Reiter R, Lane JM. Gastroenterology; 1986 Apr 01; 90(4):812-8. PubMed ID: 3949114 [Abstract] [Full Text] [Related]
15. Reaction of glutathione with a free radical metabolite of carbon tetrachloride. Connor HD, Lacagnin LB, Knecht KT, Thurman RG, Mason RP. Mol Pharmacol; 1990 Mar 01; 37(3):443-51. PubMed ID: 2156156 [Abstract] [Full Text] [Related]
16. The critical steady-state hypoxic conditions in carbon tetrachloride-induced lipid peroxidation in rat liver microsomes. Noll T, De Groot H. Biochim Biophys Acta; 1984 Sep 12; 795(2):356-62. PubMed ID: 6477950 [Abstract] [Full Text] [Related]
17. Modulation of carbon tetrachloride-induced lipid peroxidation and xenobiotic-metabolizing enzymes in rats fed browned yam flour diet. Farombi EO, Nwankwo JO, Emerole GO. Afr J Med Med Sci; 2000 Jun 12; 29(2):127-32. PubMed ID: 11379443 [Abstract] [Full Text] [Related]
18. Formation of glutathione adducts of carbon tetrachloride metabolites in a rat liver microsomal incubation system. Reiter R, Burk RF. Biochem Pharmacol; 1988 Jan 15; 37(2):327-31. PubMed ID: 3342089 [Abstract] [Full Text] [Related]
19. Effects of copper deficiency on carbon tetrachloride-induced lipid peroxidation. Lawrence RA, Jenkinson SG. J Lab Clin Med; 1987 Feb 15; 109(2):134-40. PubMed ID: 3805865 [Abstract] [Full Text] [Related]
20. Thiol oxidation and cytochrome P450-dependent metabolism of CCl4 triggers Ca2+ release from liver microsomes. Stoyanovsky DA, Cederbaum AI. Biochemistry; 1996 Dec 10; 35(49):15839-45. PubMed ID: 8961948 [Abstract] [Full Text] [Related] Page: [Next] [New Search]