These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 6522257

  • 1. Biomechanical evaluation of SACH and uniaxial feet.
    Goh JC, Solomonidis SE, Spence WD, Paul JP.
    Prosthet Orthot Int; 1984 Dec; 8(3):147-54. PubMed ID: 6522257
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Analysis of mechanical and metabolic factors in the gait of congenital below knee amputees. A comparison of the SACH and Seattle feet.
    Colborne GR, Naumann S, Longmuir PE, Berbrayer D.
    Am J Phys Med Rehabil; 1992 Oct; 71(5):272-8. PubMed ID: 1388973
    [Abstract] [Full Text] [Related]

  • 5. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking.
    Gitter A, Czerniecki JM, DeGroot DM.
    Am J Phys Med Rehabil; 1991 Jun; 70(3):142-8. PubMed ID: 2039616
    [Abstract] [Full Text] [Related]

  • 6. Comparison of the International Committee of the Red Cross foot with the solid ankle cushion heel foot during gait: a randomized double-blind study.
    Turcot K, Sagawa Y, Lacraz A, Lenoir J, Assal M, Armand S.
    Arch Phys Med Rehabil; 2013 Aug; 94(8):1490-7. PubMed ID: 23578592
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Optimisation of the prescription for trans-tibial (TT) amputees.
    Cortés A, Viosca E, Hoyos JV, Prat J, Sánchez-Lacuesta J.
    Prosthet Orthot Int; 1997 Dec; 21(3):168-74. PubMed ID: 9453087
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Transtibial amputee gait efficiency: Energy storage and return versus solid ankle cushioned heel prosthetic feet.
    Gardiner J, Bari AZ, Howard D, Kenney L.
    J Rehabil Res Dev; 2016 Dec; 53(6):1133-1138. PubMed ID: 28355033
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Low-cost prosthetic feet for underserved populations: A comparison of gait analysis and mechanical stiffness.
    Banks BP, Frei JS, Spencer A, Renninger KD, Grover JK, Abbott K, Carlson BJ, Bruening DA.
    Prosthet Orthot Int; 2023 Aug 01; 47(4):399-406. PubMed ID: 36701193
    [Abstract] [Full Text] [Related]

  • 16. Energy storing property of so-called energy-storing prosthetic feet.
    Ehara Y, Beppu M, Nomura S, Kunimi Y, Takahashi S.
    Arch Phys Med Rehabil; 1993 Jan 01; 74(1):68-72. PubMed ID: 8420524
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. A comparison of two prosthetic feet on the multi-joint and multi-plane kinetic gait compensations in individuals with a unilateral trans-tibial amputation.
    Underwood HA, Tokuno CD, Eng JJ.
    Clin Biomech (Bristol); 2004 Jul 01; 19(6):609-16. PubMed ID: 15234485
    [Abstract] [Full Text] [Related]

  • 19. Application of self-report and performance-based outcome measures to determine functional differences between four categories of prosthetic feet.
    Gailey RS, Gaunaurd I, Agrawal V, Finnieston A, O'Toole C, Tolchin R.
    J Rehabil Res Dev; 2012 Jul 01; 49(4):597-612. PubMed ID: 22773262
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.