These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
108 related items for PubMed ID: 6535863
1. Intracellular K+ activity in canine submandibular gland cells in resting and its change during stimulation. Mori H, Nakahari T, Imai Y. Jpn J Physiol; 1984; 34(6):1077-88. PubMed ID: 6535863 [Abstract] [Full Text] [Related]
2. Membrane potential and resistance measurement in acinar cells from salivary glands in vitro: effect of acetylcholine. Nishiyama A, Petersen OH. J Physiol; 1974 Oct; 242(1):173-88. PubMed ID: 4436820 [Abstract] [Full Text] [Related]
3. ACh-evoked complex membrane potential changes in mouse submaxillary gland acini. A study employing channel blockers and atropine. Wakui M, Nishiyama A. Pflugers Arch; 1980 Aug; 386(3):251-9. PubMed ID: 6252537 [Abstract] [Full Text] [Related]
4. Pancreatic acinar cells: the acetylcholine equilibrium potential and its ionic dependency. Iwatsuki N, Petersen OH. J Physiol; 1977 Aug; 269(3):735-51. PubMed ID: 894613 [Abstract] [Full Text] [Related]
5. Muscarinic activation of Na+-dependent ion transporters and modulation by bicarbonate in rat submandibular gland acinus. Lee JE, Nam JH, Kim SJ. Am J Physiol Gastrointest Liver Physiol; 2005 Apr; 288(4):G822-31. PubMed ID: 15539434 [Abstract] [Full Text] [Related]
6. Intracellular potassium activity in mammalian proximal tubule: effect of perturbations in transepithelial sodium transport. Laprade R, Lapointe JY, Breton S, Duplain M, Cardinal J. J Membr Biol; 1991 May; 121(3):249-59. PubMed ID: 1865489 [Abstract] [Full Text] [Related]
7. A patch-clamp study of potassium currents in resting and acetylcholine-stimulated mouse submandibular acinar cells. Gallacher DV, Morris AP. J Physiol; 1986 Apr; 373():379-95. PubMed ID: 2427697 [Abstract] [Full Text] [Related]
8. Intracellular potassium ion activity in resting and stimulated mouse pancreas and submandibular gland. Poulsen JH, Oakley B. Proc R Soc Lond B Biol Sci; 1979 Mar 26; 204(1154):99-104. PubMed ID: 37516 [Abstract] [Full Text] [Related]
9. Salivary gland K+ transport: in vivo studies with K+-specific microelectrodes. Poulsen JH, Bledsoe SW. Am J Physiol; 1978 Jan 26; 234(1):E79-83. PubMed ID: 623254 [Abstract] [Full Text] [Related]
10. Activation of potassium transport induced by secretagogues in superfused submaxillary gland segments of rat and mouse. Katoh K, Nakasato M, Nishiyama A, Sakai M. J Physiol; 1983 Aug 26; 341():371-85. PubMed ID: 6194288 [Abstract] [Full Text] [Related]
11. Basolateral K+ efflux is largely independent of maxi-K+ channels in rat submandibular glands during secretion. Ishikawa T, Murakami M, Seo Y. Pflugers Arch; 1994 Oct 26; 428(5-6):516-25. PubMed ID: 7530839 [Abstract] [Full Text] [Related]
12. Potassium uptake in the mouse submandibular gland is dependent on chloride and sodium and abolished by piretanide. Exley PM, Fuller CM, Gallacher DV. J Physiol; 1986 Sep 26; 378():97-108. PubMed ID: 3795114 [Abstract] [Full Text] [Related]
13. Effect of changes in extracellular potassium on intracellular pH in principal cells of frog skin. Lyall V, Belcher TS, Biber TU. Am J Physiol; 1992 Oct 26; 263(4 Pt 2):F722-30. PubMed ID: 1415743 [Abstract] [Full Text] [Related]
14. Effects of acetylcholine on the smooth muscle cell of isolated main coronary artery of the guinea-pig. Kitamura K, Kuriyama H. J Physiol; 1979 Aug 26; 293():119-33. PubMed ID: 501578 [Abstract] [Full Text] [Related]
15. The effect of extracellular potassium on the intracellular potassium ion activity and transmembrane potentials of beating canine cardiac Purkinje fibers. Miura DS, Hoffman BF, Rosen MR. J Gen Physiol; 1977 Apr 26; 69(4):463-74. PubMed ID: 853287 [Abstract] [Full Text] [Related]
16. Mechanism of NaCl secretion in the rectal gland of spiny dogfish (Squalus acanthias). I. Experiments in isolated in vitro perfused rectal gland tubules. Greger R, Schlatter E. Pflugers Arch; 1984 Sep 26; 402(1):63-75. PubMed ID: 6095178 [Abstract] [Full Text] [Related]
17. The basis for the membrane potential of quiescent cells of the canine coronary sinus. Boyden PA, Cranefield PF, Gadsby DC, Wit AL. J Physiol; 1983 Jun 26; 339():161-83. PubMed ID: 6887021 [Abstract] [Full Text] [Related]
18. Intra- and extracellular potassium activities, acetylcholine and resting potential in guinea pig atria. Baumgarten CM, Singer DH, Fozzard HA. Circ Res; 1984 Jan 26; 54(1):65-73. PubMed ID: 6692500 [Abstract] [Full Text] [Related]
19. Regulation of membrane potential and fluid secretion by Ca2+-activated K+ channels in mouse submandibular glands. Romanenko VG, Nakamoto T, Srivastava A, Begenisich T, Melvin JE. J Physiol; 2007 Jun 01; 581(Pt 2):801-17. PubMed ID: 17379640 [Abstract] [Full Text] [Related]
20. Intracellular Cl- activity of canine submandibular gland cells: an in vitro observation. Mori H, Murakami M, Nakahari T, Imai Y. Jpn J Physiol; 1983 Jun 01; 33(5):869-73. PubMed ID: 6321833 [Abstract] [Full Text] [Related] Page: [Next] [New Search]