These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


140 related items for PubMed ID: 6546380

  • 1. Damaging effects of oxygen radicals on resealed erythrocyte ghosts.
    Girotti AW, Thomas JP.
    J Biol Chem; 1984 Feb 10; 259(3):1744-52. PubMed ID: 6546380
    [Abstract] [Full Text] [Related]

  • 2. Lipid photooxidation in erythrocyte ghosts: sensitization of the membranes toward ascorbate- and superoxide-induced peroxidation and lysis.
    Girotti AW, Thomas JP, Jordan JE.
    Arch Biochem Biophys; 1985 Jan 10; 236(1):238-51. PubMed ID: 2981506
    [Abstract] [Full Text] [Related]

  • 3. Inhibition of cell membrane lipid peroxidation by cadmium- and zinc-metallothioneins.
    Thomas JP, Bachowski GJ, Girotti AW.
    Biochim Biophys Acta; 1986 Dec 10; 884(3):448-61. PubMed ID: 3778934
    [Abstract] [Full Text] [Related]

  • 4. Inhibitory effect of zinc(II) on free radical lipid peroxidation in erythrocyte membranes.
    Girotti AW, Thomas JP, Jordan JE.
    J Free Radic Biol Med; 1985 Dec 10; 1(5-6):395-401. PubMed ID: 3841804
    [Abstract] [Full Text] [Related]

  • 5. Xanthine oxidase-catalyzed crosslinking of cell membrane proteins.
    Girotti AW, Thomas JP, Jordan JE.
    Arch Biochem Biophys; 1986 Dec 10; 251(2):639-53. PubMed ID: 3800391
    [Abstract] [Full Text] [Related]

  • 6. The relative effectiveness of .OH, H2O2, O2-, and reducing free radicals in causing damage to biomembranes. A study of radiation damage to erythrocyte ghosts using selective free radical scavengers.
    Kong S, Davison AJ.
    Biochim Biophys Acta; 1981 Jan 08; 640(1):313-25. PubMed ID: 6260172
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW, Feierman DE, Cederbaum AI.
    Arch Biochem Biophys; 1984 Jul 08; 232(1):378-90. PubMed ID: 6331321
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction.
    Winterbourn CC, Sutton HC.
    Arch Biochem Biophys; 1986 Jan 08; 244(1):27-34. PubMed ID: 3004338
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Peroxidation of linolenic acid promoted by human polymorphonuclear leucocytes.
    Carlin G.
    J Free Radic Biol Med; 1985 Jan 08; 1(4):255-61. PubMed ID: 2873164
    [Abstract] [Full Text] [Related]

  • 16. Allopurinol-insensitive oxygen radical formation by milk xanthine oxidase systems.
    Nakamura M.
    J Biochem; 1991 Sep 08; 110(3):450-6. PubMed ID: 1663114
    [Abstract] [Full Text] [Related]

  • 17. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM, Grover TA, Nayini N, Aust SD.
    Arch Biochem Biophys; 1993 Feb 15; 301(1):1-7. PubMed ID: 8382902
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Depression of heart sarcolemmal Ca2+-pump activity by oxygen free radicals.
    Kaneko M, Beamish RE, Dhalla NS.
    Am J Physiol; 1989 Feb 15; 256(2 Pt 2):H368-74. PubMed ID: 2537032
    [Abstract] [Full Text] [Related]

  • 20. Singlet oxygen generation in the superoxide reaction.
    Mao Y, Zang L, Shi X.
    Biochem Mol Biol Int; 1995 May 15; 36(1):227-32. PubMed ID: 7663419
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.