These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
63 related items for PubMed ID: 656469
1. Blue-fluorescent bovine alpha-crystallin. Fujimori E. Biochim Biophys Acta; 1978 May 24; 534(1):82-8. PubMed ID: 656469 [Abstract] [Full Text] [Related]
2. Effect of UV-A light on the chaperone-like properties of young and old lens alpha-crystallin. Weinreb O, van Boekel MA, Dovrat A, Bloemendal H. Invest Ophthalmol Vis Sci; 2000 Jan 24; 41(1):191-8. PubMed ID: 10634620 [Abstract] [Full Text] [Related]
3. In vivo glycation of bovine lens crystallins. Van Boekel MA, Hoenders HJ. Biochim Biophys Acta; 1992 Sep 04; 1159(1):99-102. PubMed ID: 1390916 [Abstract] [Full Text] [Related]
4. Comparison of ultraviolet induced photo-kinetics for lens-derived and recombinant beta-crystallins. Ostrovsky MA, Sergeev YV, Atkinson DB, Soustov LV, Hejtmancik JF. Mol Vis; 2002 Mar 20; 8():72-8. PubMed ID: 11951082 [Abstract] [Full Text] [Related]
5. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K, Chaves JM, Srivastava OP, Kirk M. Exp Eye Res; 2008 Oct 20; 87(4):356-66. PubMed ID: 18662688 [Abstract] [Full Text] [Related]
6. Near-ultraviolet circular dichroism of bovine high molecular weight alpha-crystallin. Liang J, Rossi M. Invest Ophthalmol Vis Sci; 1989 Sep 20; 30(9):2065-8. PubMed ID: 2777524 [Abstract] [Full Text] [Related]
7. Human alpha-crystallin-III isolation and characterization of protein from normal infant lenses and old lens peripheries. Roy D, Spector A. Invest Ophthalmol; 1976 May 20; 15(5):394-9. PubMed ID: 1262170 [Abstract] [Full Text] [Related]
8. The quaternary structure of bovine alpha-crystallin. Size and charge microheterogeneity: more than 1000 different hybrids? Siezen RJ, Bindels JG, Hoenders HJ. Eur J Biochem; 1978 Nov 15; 91(2):387-96. PubMed ID: 729577 [Abstract] [Full Text] [Related]
9. Human lens high-molecular-weight alpha-crystallin aggregates. Liang JJ, Akhtar NJ. Biochem Biophys Res Commun; 2000 Aug 28; 275(2):354-9. PubMed ID: 10964670 [Abstract] [Full Text] [Related]
10. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin. Babizhayev MA, Bours J, Utikal KJ. Ophthalmic Res; 1996 Aug 28; 28(6):365-74. PubMed ID: 9032796 [Abstract] [Full Text] [Related]
11. Changes in proteins of the human lens in development and aging. Dilley KJ, Harding JJ. Biochim Biophys Acta; 1975 Apr 29; 386(2):391-408. PubMed ID: 1169968 [Abstract] [Full Text] [Related]
12. Physicochemical characterization of high-molecular-weight alpha-crystallin subpopulations from the calf lens nucleus. Siezen RJ, Owen EA. Biochim Biophys Acta; 1983 Dec 28; 749(3):227-37. PubMed ID: 6661439 [Abstract] [Full Text] [Related]
13. Fluorescent and compositional changes in crystallin supramolecular structures in pig lens during development. Garcia-Barreno P, Guisasola MC, Suarez A. Comp Biochem Physiol B Biochem Mol Biol; 2005 Jun 28; 141(2):179-85. PubMed ID: 15908249 [Abstract] [Full Text] [Related]
14. Isolation and characterization of betaA3-crystallin associated proteinase from alpha-crystallin fraction of human lenses. Srivastava OP, Srivastava K, Chaves JM. Mol Vis; 2008 Jun 28; 14():1872-85. PubMed ID: 18949065 [Abstract] [Full Text] [Related]
15. In vitro non-enzymatic glycation and formation of browning products in the bovine lens alpha-crystallin. Liang JN, Rossi MT. Exp Eye Res; 1990 Apr 28; 50(4):367-71. PubMed ID: 2110908 [Abstract] [Full Text] [Related]
16. The molecular localization of non-tryptophan chromophores in calf lens crystallins. Pulcini D, Stiuso P, Miele L, Della Pietra G, Colonna G. Biochim Biophys Acta; 1989 Mar 16; 995(1):64-9. PubMed ID: 2923916 [Abstract] [Full Text] [Related]
17. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V, McCall S, Huynh S, Srivastava K, Srivastava OP. Mol Vis; 2004 Jul 19; 10():476-89. PubMed ID: 15303090 [Abstract] [Full Text] [Related]
18. Factors influencing alpha-crystallin association with phospholipid vesicles. Cobb BA, Petrash JM. Mol Vis; 2002 Mar 22; 8():85-93. PubMed ID: 11951084 [Abstract] [Full Text] [Related]
19. The photochemical attachment of the O-glucoside of 3-hydroxykynurenine to alpha-crystallin: a model for lenticular aging. Dillon J, Skonieczna M, Mandal K, Paik D. Photochem Photobiol; 1999 Feb 22; 69(2):248-53. PubMed ID: 10048317 [Abstract] [Full Text] [Related]
20. Interaction of lens alpha and gamma crystallins during aging of the bovine lens. Peterson J, Radke G, Takemoto L. Exp Eye Res; 2005 Dec 22; 81(6):680-9. PubMed ID: 15967431 [Abstract] [Full Text] [Related] Page: [Next] [New Search]