These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 6584925
1. Fiber-fiber interaction and tectal cues influence the development of the chicken retinotectal projection. Thanos S, Bonhoeffer F, Rutishauser U. Proc Natl Acad Sci U S A; 1984 Mar; 81(6):1906-10. PubMed ID: 6584925 [Abstract] [Full Text] [Related]
2. Development of the transient ipsilateral retinotectal projection in the chick embryo: a numerical fluorescence-microscopic analysis. Thanos S, Bonhoeffer F. J Comp Neurol; 1984 Apr 10; 224(3):407-14. PubMed ID: 6715587 [Abstract] [Full Text] [Related]
6. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. Nakamura H, O'Leary DD. J Neurosci; 1989 Nov 10; 9(11):3776-95. PubMed ID: 2585055 [Abstract] [Full Text] [Related]
7. DSCAM is differentially patterned along the optic axon pathway in the developing Xenopus visual system and guides axon termination at the target. Santos RA, Del Rio R, Alvarez AD, Romero G, Vo BZ, Cohen-Cory S. Neural Dev; 2022 Apr 15; 17(1):5. PubMed ID: 35422013 [Abstract] [Full Text] [Related]
8. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring. Santos RA, Fuertes AJC, Short G, Donohue KC, Shao H, Quintanilla J, Malakzadeh P, Cohen-Cory S. Neural Dev; 2018 Sep 15; 13(1):22. PubMed ID: 30219101 [Abstract] [Full Text] [Related]
9. The developing chick isthmo-optic nucleus forms a transient efferent projection to the optic tectum. Wizenmann A, Thanos S. Neurosci Lett; 1990 Jun 08; 113(3):241-6. PubMed ID: 2381560 [Abstract] [Full Text] [Related]
10. Evidence for shifting connections during development of the chick retinotectal projection. McLoon SC. J Neurosci; 1985 Oct 08; 5(10):2570-80. PubMed ID: 2995601 [Abstract] [Full Text] [Related]
11. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens. Reh TA, Pitts E, Constantine-Paton M. J Comp Neurol; 1983 Aug 10; 218(3):282-96. PubMed ID: 6604077 [Abstract] [Full Text] [Related]
12. [The refinement of retinotectal projection on tectal whole mount during the regeneration of the goldfish optic nerve labeled with DiI anterogradely]. Wang ZR, Meyer RL. Shi Yan Sheng Wu Xue Bao; 1994 Jun 10; 27(2):143-51. PubMed ID: 7976053 [Abstract] [Full Text] [Related]
13. Spatial arrangement of radial glia and ingrowing retinal axons in the chick optic tectum during development. Vanselow J, Thanos S, Godement P, Henke-Fahle S, Bonhoeffer F. Brain Res Dev Brain Res; 1989 Jan 01; 45(1):15-27. PubMed ID: 2917409 [Abstract] [Full Text] [Related]
14. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth. Perez RG, Halfter W. Dev Biol; 1993 Mar 01; 156(1):278-92. PubMed ID: 7680630 [Abstract] [Full Text] [Related]
15. Regional specialization in retinal ganglion cell projection to optic tectum of Dipsosaurus dorsalis (Iguanidae). Peterson EH. J Comp Neurol; 1981 Feb 20; 196(2):225-52. PubMed ID: 7217356 [Abstract] [Full Text] [Related]
16. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening. Schmidt JT, Fleming MR, Leu B. J Neurobiol; 2004 Feb 15; 58(3):328-40. PubMed ID: 14750146 [Abstract] [Full Text] [Related]
17. Corresponding spatial gradients of TOP molecules in the developing retina and optic tectum. Trisler D, Collins F. Science; 1987 Sep 04; 237(4819):1208-9. PubMed ID: 3629237 [Abstract] [Full Text] [Related]
18. Axons added to the regenerated visual pathway of goldfish establish a normal fiber topography along the age-axis. Bernhardt R, Easter SS, Raymond PA. J Comp Neurol; 1988 Nov 15; 277(3):420-9. PubMed ID: 3198799 [Abstract] [Full Text] [Related]
19. Amphibian-specific regulation of polysialic acid and the neural cell adhesion molecule in development and regeneration of the retinotectal system of the salamander Pleurodeles waltl. Becker T, Becker CG, Niemann U, Naujoks-Manteuffel C, Gerardy-Schahn R, Roth G. J Comp Neurol; 1993 Oct 22; 336(4):532-44. PubMed ID: 8245224 [Abstract] [Full Text] [Related]
20. Retinotectal ligands for the receptor tyrosine phosphatase CRYPalpha. Haj F, McKinnell I, Stoker A. Mol Cell Neurosci; 1999 Sep 22; 14(3):225-40. PubMed ID: 10493824 [Abstract] [Full Text] [Related] Page: [Next] [New Search]