These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


329 related items for PubMed ID: 6589161

  • 1. Differences in the binding of sulfate, selenate and thiosulfate ions to bovine liver rhodanese, and a description of a binding site for ammonium and sodium ions. An X-ray diffraction study.
    Lijk LJ, Torfs CA, Kalk KH, De Maeyer MC, Hol WG.
    Eur J Biochem; 1984 Jul 16; 142(2):399-408. PubMed ID: 6589161
    [Abstract] [Full Text] [Related]

  • 2. Binding of metal cyanide complexes to bovine liver rhodanese in the crystalline state.
    Lijk LJ, Kalk KH, Brandenburg NP, Hol WG.
    Biochemistry; 1983 Jun 07; 22(12):2952-7. PubMed ID: 6575830
    [Abstract] [Full Text] [Related]

  • 3. Soaking in Cs2SO4 reveals a caesium-aromatic interaction in bovine-liver rhodanese.
    Kooystra PJ, Kalk KH, Hol WG.
    Eur J Biochem; 1988 Nov 01; 177(2):345-9. PubMed ID: 3191921
    [Abstract] [Full Text] [Related]

  • 4. Reaction of rhodanese with dithiothreitol.
    Pecci L, Pensa B, Costa M, Cignini PL, Cannella C.
    Biochim Biophys Acta; 1976 Aug 12; 445(1):104-11. PubMed ID: 986188
    [Abstract] [Full Text] [Related]

  • 5. Active site modifications quench intrinsic fluorescence of rhodanese by different mechanisms.
    Cannella C, Berni R, Rosato N, Finazzi-Agrò A.
    Biochemistry; 1986 Nov 18; 25(23):7319-23. PubMed ID: 3467793
    [Abstract] [Full Text] [Related]

  • 6. The covalent and tertiary structure of bovine liver rhodanese.
    Ploegman JH, Drent G, Kalk KH, Hol WG, Heinrikson RL, Keim P, Weng L, Russell J.
    Nature; 1978 May 11; 273(5658):124-9. PubMed ID: 643076
    [Abstract] [Full Text] [Related]

  • 7. Active site cysteinyl and arginyl residues of rhodanese. A novel formation of disulfide bonds in the active site promoted by phenylglyoxal.
    Weng L, Heinrikson RL, Westley J.
    J Biol Chem; 1978 Nov 25; 253(22):8109-19. PubMed ID: 711738
    [Abstract] [Full Text] [Related]

  • 8. The inhibition of rhodanese by lipoate and iron-sulfur proteins.
    Pagani S, Bonomi F, Cerletti P.
    Biochim Biophys Acta; 1983 Jan 12; 742(1):116-21. PubMed ID: 6402017
    [Abstract] [Full Text] [Related]

  • 9. The differential functional stability of various forms of bovine liver rhodanese.
    Aird BA, Horowitz PM.
    Biochim Biophys Acta; 1988 Aug 31; 956(1):30-8. PubMed ID: 3165676
    [Abstract] [Full Text] [Related]

  • 10. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates.
    Prasad AR, Horowitz PM.
    Biochim Biophys Acta; 1987 Jan 05; 911(1):102-8. PubMed ID: 3466649
    [Abstract] [Full Text] [Related]

  • 11. Selective reactivity of rhodanese sulfhydryl groups with 5,5'-dithio-bis(2-nitrobenzoic acid).
    Pensa B, Costa M, Pecci L, Cannella C, Cavallini D.
    Biochim Biophys Acta; 1977 Oct 13; 484(2):368-74. PubMed ID: 911854
    [Abstract] [Full Text] [Related]

  • 12. Refinement of the structure of human basic fibroblast growth factor at 1.6 A resolution and analysis of presumed heparin binding sites by selenate substitution.
    Eriksson AE, Cousens LS, Matthews BW.
    Protein Sci; 1993 Aug 13; 2(8):1274-84. PubMed ID: 7691311
    [Abstract] [Full Text] [Related]

  • 13. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families.
    Bordo D, Deriu D, Colnaghi R, Carpen A, Pagani S, Bolognesi M.
    J Mol Biol; 2000 May 12; 298(4):691-704. PubMed ID: 10788330
    [Abstract] [Full Text] [Related]

  • 14. Active site structural features for chemically modified forms of rhodanese.
    Gliubich F, Gazerro M, Zanotti G, Delbono S, Bombieri G, Berni R.
    J Biol Chem; 1996 Aug 30; 271(35):21054-61. PubMed ID: 8702871
    [Abstract] [Full Text] [Related]

  • 15. The structure of bovine liver rhodanese. II. The active site in the sulfur-substituted and the sulfur-free enzyme.
    Ploegman JH, Drent G, Kalk KH, Hol WG.
    J Mol Biol; 1979 Jan 15; 127(2):149-62. PubMed ID: 430559
    [No Abstract] [Full Text] [Related]

  • 16. Some comparisons between solution and crystal properties of thiosulfate sulfurtransferase.
    Horowitz PM, Patel K.
    Biochem Biophys Res Commun; 1980 May 30; 94(2):419-23. PubMed ID: 6930969
    [No Abstract] [Full Text] [Related]

  • 17. Determination of Total Sulfur, Sulfate, Sulfite, Thiosulfate, and Sulfolipids in Plants.
    Kurmanbayeva A, Brychkova G, Bekturova A, Khozin I, Standing D, Yarmolinsky D, Sagi M.
    Methods Mol Biol; 2017 May 30; 1631():253-271. PubMed ID: 28735402
    [Abstract] [Full Text] [Related]

  • 18. New crystalline derivatives of bovine liver rhodanese.
    Berni R, Cannella C, Monaco HL, Rossi GL.
    Biochem Int; 1986 May 30; 12(5):733-40. PubMed ID: 3460592
    [Abstract] [Full Text] [Related]

  • 19. The high resolution three-dimensional structure of bovine liver rhodanese.
    Hol WG, Lijk LJ, Kalk KH.
    Fundam Appl Toxicol; 1983 May 30; 3(5):370-6. PubMed ID: 6357922
    [Abstract] [Full Text] [Related]

  • 20. Rhodanese-Mediated sulfur transfer to succinate dehydrogenase.
    Bonomi F, Pagani S, Cerletti P, Cannella C.
    Eur J Biochem; 1977 Jan 03; 72(1):17-24. PubMed ID: 318999
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.