These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


251 related items for PubMed ID: 6589599

  • 1. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH.
    Kirkman HN, Gaetani GF.
    Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4343-7. PubMed ID: 6589599
    [Abstract] [Full Text] [Related]

  • 2. A novel NADPH:(bound) NADP+ reductase and NADH:(bound) NADP+ transhydrogenase function in bovine liver catalase.
    Gaetani GF, Ferraris AM, Sanna P, Kirkman HN.
    Biochem J; 2005 Feb 01; 385(Pt 3):763-8. PubMed ID: 15456401
    [Abstract] [Full Text] [Related]

  • 3. The function of catalase-bound NADPH.
    Kirkman HN, Galiano S, Gaetani GF.
    J Biol Chem; 1987 Jan 15; 262(2):660-6. PubMed ID: 3805001
    [Abstract] [Full Text] [Related]

  • 4. Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes.
    Gaetani GF, Galiano S, Canepa L, Ferraris AM, Kirkman HN.
    Blood; 1989 Jan 15; 73(1):334-9. PubMed ID: 2491951
    [Abstract] [Full Text] [Related]

  • 5. Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry.
    Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF.
    J Biol Chem; 1999 May 14; 274(20):13908-14. PubMed ID: 10318800
    [Abstract] [Full Text] [Related]

  • 6. Catalases are NAD(P)H-dependent tellurite reductases.
    Calderón IL, Arenas FA, Pérez JM, Fuentes DE, Araya MA, Saavedra CP, Tantaleán JC, Pichuantes SE, Youderian PA, Vásquez CC.
    PLoS One; 2006 Dec 20; 1(1):e70. PubMed ID: 17183702
    [Abstract] [Full Text] [Related]

  • 7. Interaction of phlorizin, a potent inhibitor of the Na+/D-glucose cotransporter, with the NADPH-binding site of mammalian catalases.
    Kitlar T, Döring F, Diedrich DF, Frank R, Wallmeier H, Kinne RK, Deutscher J.
    Protein Sci; 1994 Apr 20; 3(4):696-700. PubMed ID: 8003987
    [Abstract] [Full Text] [Related]

  • 8. The function of NADPH bound to Catalase.
    Cattani L, Ferri A.
    Boll Soc Ital Biol Sper; 1994 Apr 20; 70(4):75-82. PubMed ID: 8086159
    [Abstract] [Full Text] [Related]

  • 9. Ascorbic acid reduction of compound I of mammalian catalases proceeds via specific binding to the NADPH binding pocket.
    Korth HG, Meier AC, Auferkamp O, Sicking W, de Groot H, Sustmann R, Kirsch M.
    Biochemistry; 2012 Jun 12; 51(23):4693-703. PubMed ID: 22616883
    [Abstract] [Full Text] [Related]

  • 10. Decreased catalase activity is the underlying mechanism of oxidant susceptibility in glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Scott MD, Wagner TC, Chiu DT.
    Biochim Biophys Acta; 1993 Apr 30; 1181(2):163-8. PubMed ID: 8481405
    [Abstract] [Full Text] [Related]

  • 11. Importance of catalase in the disposal of hydrogen peroxide within human erythrocytes.
    Gaetani GF, Kirkman HN, Mangerini R, Ferraris AM.
    Blood; 1994 Jul 01; 84(1):325-30. PubMed ID: 8018928
    [Abstract] [Full Text] [Related]

  • 12. Superoxide generated by glutathione reductase initiates a vanadate-dependent free radical chain oxidation of NADH.
    Liochev SI, Fridovich I.
    Arch Biochem Biophys; 1992 May 01; 294(2):403-6. PubMed ID: 1314540
    [Abstract] [Full Text] [Related]

  • 13. The NADPH binding site on beef liver catalase.
    Fita I, Rossmann MG.
    Proc Natl Acad Sci U S A; 1985 Mar 01; 82(6):1604-8. PubMed ID: 3856839
    [Abstract] [Full Text] [Related]

  • 14. NADPH binding and control of catalase compound II formation: comparison of bovine, yeast, and Escherichia coli enzymes.
    Hillar A, Nicholls P, Switala J, Loewen PC.
    Biochem J; 1994 Jun 01; 300 ( Pt 2)(Pt 2):531-9. PubMed ID: 8002960
    [Abstract] [Full Text] [Related]

  • 15. Characterization of hydrogen peroxide removal reaction by hemoglobin in the presence of reduced pyridine nucleotides.
    Masuoka N, Kodama H, Abe T, Wang DH, Nakano T.
    Biochim Biophys Acta; 2003 Jan 20; 1637(1):46-54. PubMed ID: 12527406
    [Abstract] [Full Text] [Related]

  • 16. Interaction between pyridine adenine dinucleotides and bovine liver catalase: a chromatographic and spectral study.
    Jouve HM, Pelmont J, Gaillard J.
    Arch Biochem Biophys; 1986 Jul 20; 248(1):71-9. PubMed ID: 3015030
    [Abstract] [Full Text] [Related]

  • 17. Mammalian catalase: a venerable enzyme with new mysteries.
    Kirkman HN, Gaetani GF.
    Trends Biochem Sci; 2007 Jan 20; 32(1):44-50. PubMed ID: 17158050
    [Abstract] [Full Text] [Related]

  • 18. Inactivation of an animal and a fungal catalase by hydrogen peroxide.
    DeLuca DC, Dennis R, Smith WG.
    Arch Biochem Biophys; 1995 Jun 20; 320(1):129-34. PubMed ID: 7793971
    [Abstract] [Full Text] [Related]

  • 19. A mechanism for NADPH inhibition of catalase compound II formation.
    Hillar A, Nicholls P.
    FEBS Lett; 1992 Dec 14; 314(2):179-82. PubMed ID: 1459249
    [Abstract] [Full Text] [Related]

  • 20. Subcellular accumulation and source of O2- and H2O2 in submerged plant Hydrilla verticillata (L.f.) Royle under NH4+-N stress condition.
    Zhuang K, Shi D, Hu Z, Xu F, Chen Y, Shen Z.
    Aquat Toxicol; 2019 Feb 14; 207():1-12. PubMed ID: 30500560
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.