These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 6604559
1. Photomechanical responses of visual receptors in the retina of the bullfrog (Rana catesbeiana). Grigonis AM, Fite KV. Brain Behav Evol; 1983; 22(4):212-22. PubMed ID: 6604559 [Abstract] [Full Text] [Related]
2. Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors. Dearry A, Edelman JL, Miller S, Burnside B. J Neurochem; 1990 Apr; 54(4):1367-78. PubMed ID: 2156019 [Abstract] [Full Text] [Related]
3. Segregation of vitamin A1 and vitamin A2 cone pigments in the bullfrog retina. Semple-Rowland SL, Goldstein EB. Vision Res; 1981 Apr; 21(6):825-8. PubMed ID: 6976037 [No Abstract] [Full Text] [Related]
4. The green rod pigment of the bullfrog, Rana catesbeiana. Makino-Tasaka M, Suzuki T. Vision Res; 1984 Apr; 24(4):309-22. PubMed ID: 6610986 [Abstract] [Full Text] [Related]
5. Isolation of rod early receptor potential from frog retina. Nakamura T, Tokunaga F, Yoshizawa T. Vision Res; 1978 Apr; 18(7):861-3. PubMed ID: 307862 [No Abstract] [Full Text] [Related]
6. The thermal contribution to photoactivation in A2 visual pigments studied by temperature effects on spectral properties. Ala-Laurila P, Albert RJ, Saarinen P, Koskelainen A, Donner K. Vis Neurosci; 2003 Apr; 20(4):411-9. PubMed ID: 14658769 [Abstract] [Full Text] [Related]
7. Photoreceptor sensitivity as a function of rhodopsin content in the isolated bullfrog retina. Toba Y, Hanawa I. Jpn J Physiol; 1985 Apr; 35(3):483-94. PubMed ID: 2414499 [Abstract] [Full Text] [Related]
8. The regeneration of visual pigments and the change of rod hypersensitivity after irradiation by bleaching light in frog retina. Azuma K, Azuma M. Photochem Photobiol; 1980 Oct; 32(4):529-38. PubMed ID: 6969896 [No Abstract] [Full Text] [Related]
9. Photoreceptor spectral absorbance in larval and adult winter flounder (Pseudopleuronectes americanus). Evans BI, Hárosi FI, Fernald RD. Vis Neurosci; 1993 Oct; 10(6):1065-71. PubMed ID: 8257663 [Abstract] [Full Text] [Related]
13. Action spectrum of photomechanical cone contraction in the catfish retina. Douglas R, Wagner HJ. Invest Ophthalmol Vis Sci; 1984 May 01; 25(5):534-8. PubMed ID: 6715127 [Abstract] [Full Text] [Related]
15. Photoreceptor layer of salmonid fishes: transformation and loss of single cones in juvenile fish. Cheng CL, Flamarique IN, Hárosi FI, Rickers-Haunerland J, Haunerland NH. J Comp Neurol; 2006 Mar 10; 495(2):213-35. PubMed ID: 16435286 [Abstract] [Full Text] [Related]
17. Temperature dependency of light adaptation in bullfrog cone photoreceptors. Haynes LW, Sillman AJ. Brain Res Bull; 1987 May 10; 18(5):677-80. PubMed ID: 3496940 [Abstract] [Full Text] [Related]
19. Rod and cone contributions to the delayed response of the on-off ganglion cell in the frog. Chino YM, Sturr JF. Vision Res; 1975 Feb 10; 15(2):193-202. PubMed ID: 1079382 [No Abstract] [Full Text] [Related]
20. Temporal shifts in visual pigment absorbance in the retina of Pacific salmon. Flamarique IN. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan 10; 191(1):37-49. PubMed ID: 15549325 [Abstract] [Full Text] [Related] Page: [Next] [New Search]