These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 6611386
1. Depolarization-contraction coupling in short frog muscle fibers. A voltage clamp study. Caputo C, Bezanilla F, Horowicz P. J Gen Physiol; 1984 Jul; 84(1):133-54. PubMed ID: 6611386 [Abstract] [Full Text] [Related]
2. Calcium transients studied under voltage-clamp control in frog twitch muscle fibres. Miledi R, Parker I, Zhu PH. J Physiol; 1983 Jul; 340():649-80. PubMed ID: 6604154 [Abstract] [Full Text] [Related]
3. Membrane charge moved at contraction thresholds in skeletal muscle fibres. Horowicz P, Schneider MF. J Physiol; 1981 May; 314():595-633. PubMed ID: 6975815 [Abstract] [Full Text] [Related]
4. Effect of membrane polarization on contractile threshold and time course of prolonged contractile responses in skeletal muscle fibers. Caputo C, Bolaños P, Gonzalez GF. J Gen Physiol; 1984 Dec; 84(6):927-43. PubMed ID: 6097639 [Abstract] [Full Text] [Related]
5. Effect of caffeine on intramembrane charge movement and calcium transients in cut skeletal muscle fibres of the frog. Kovács L, Szücs G. J Physiol; 1983 Aug; 341():559-78. PubMed ID: 6604806 [Abstract] [Full Text] [Related]
6. Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling. Brum G, Fitts R, Pizarro G, Ríos E. J Physiol; 1988 Apr; 398():475-505. PubMed ID: 3260626 [Abstract] [Full Text] [Related]
7. Contractile activation phenomena in voltage-clamped barnacle muscle fiber. Caputo C, Dipolo R. J Gen Physiol; 1978 May; 71(5):467-88. PubMed ID: 660158 [Abstract] [Full Text] [Related]
8. Effects of calcium, barium and lanthanum on depolarization-contraction coupling in skeletal muscle fibres of Rana pipiens. Bolaños P, Caputo C, Velaz L. J Physiol; 1986 Jan; 370():39-60. PubMed ID: 3485716 [Abstract] [Full Text] [Related]
10. Membrane potential, contractile activation and relaxation rates in voltage clamped short muscle fibres of the frog. Caputo C, Fernandez de Bolaños P. J Physiol; 1979 Apr; 289():175-89. PubMed ID: 313438 [Abstract] [Full Text] [Related]
11. Inactivation of excitation-contraction coupling in rat extensor digitorum longus and soleus muscles. Chua M, Dulhunty AF. J Gen Physiol; 1988 May; 91(5):737-57. PubMed ID: 3418320 [Abstract] [Full Text] [Related]
12. Excitation-concentration coupling in frog ventricle: evidence from voltage clamp studies. Morad M, Orkand RK. J Physiol; 1971 Dec; 219(1):167-89. PubMed ID: 5316660 [Abstract] [Full Text] [Related]
13. Intramembrane charge movement and calcium release in frog skeletal muscle. Melzer W, Schneider MF, Simon BJ, Szucs G. J Physiol; 1986 Apr; 373():481-511. PubMed ID: 3489092 [Abstract] [Full Text] [Related]
17. Effects of D-600 on intramembrane charge movement of polarized and depolarized frog muscle fibers. Caputo C, Bolaños P. J Gen Physiol; 1989 Jul; 94(1):43-64. PubMed ID: 2478660 [Abstract] [Full Text] [Related]
18. Effects of sulfhydryl inhibitors on depolarizations-contraction coupling in frog skeletal muscle fibers. Caputo C, Bolaños P, Gonzalez A. J Gen Physiol; 1993 Mar; 101(3):411-24. PubMed ID: 8473850 [Abstract] [Full Text] [Related]