These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 661284

  • 1. The relationship of glycogen, glucose, and lactate to mitochondrial dysfunction in late hemorrhagic shock.
    Rhodes RS.
    J Surg Res; 1978 Jun; 24(6):507-12. PubMed ID: 661284
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Effect of mitochondrial dysfunction on hepatic glycogenolysis in late hemorrhagic shock.
    Rhodes RS.
    Surg Forum; 1979 Jun; 30():14-6. PubMed ID: 538577
    [No Abstract] [Full Text] [Related]

  • 5. Potential relationships of changes in cell transport and metabolism in shock.
    Baue AE, Sayeed MM, Wurth MA.
    Adv Exp Med Biol; 1972 Jun; 33(0):253-62. PubMed ID: 4277612
    [No Abstract] [Full Text] [Related]

  • 6. Mitochondrial dysfunction of the liver and hypoglycemia in hemorrhagic shock.
    Rhodes RS, DePalma RG.
    Surg Gynecol Obstet; 1980 Mar; 150(3):347-52. PubMed ID: 7355358
    [Abstract] [Full Text] [Related]

  • 7. Mitochondrial metabolism of succinate, beta-hydroxybutyrate, and alpha-ketoglutarate in hemorrhagic shock.
    Sayeed MM, Baue AE.
    Am J Physiol; 1971 May; 220(5):1275-81. PubMed ID: 4324939
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Reversal of ischemically induced uncoupled oxidative phosphorylation by restoration of adequate perfusion.
    Rhodes RS, DePalma RG.
    Surg Forum; 1976 May; 27(62):13-5. PubMed ID: 1019827
    [No Abstract] [Full Text] [Related]

  • 11. Shock induced alterations of mitochondrial energy-linked functions.
    Mela L, Bacalzo LV, White RR, Miller LD.
    Surg Forum; 1970 May; 21():6-8. PubMed ID: 4255229
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Glucose homeostasis in a guinea pig model of hemorrhagic shock.
    Rhodes RS.
    J Surg Res; 1981 Jun; 30(6):569-75. PubMed ID: 7242075
    [No Abstract] [Full Text] [Related]

  • 14. Phase-related changes in tissue energy reserves during hemorrhagic shock.
    Pearce FJ, Connett RJ, Drucker WR.
    J Surg Res; 1985 Nov; 39(5):390-8. PubMed ID: 4058001
    [Abstract] [Full Text] [Related]

  • 15. Cyclic AMP and metabolic substrates in hemorrhagic shock of the rat.
    Farnebo LO, Fredholm BB, Hamberger B, Hjemdahl P, Westman L.
    Acta Chir Scand; 1977 Nov; 143(1):9-14. PubMed ID: 193330
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The dynamics of altered ATP-dependent and ATP-yielding cell processes in shock.
    Baue AE, Wurth MA, Sayeed MM.
    Surgery; 1972 Jul; 72(1):94-101. PubMed ID: 4260717
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.