These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


239 related items for PubMed ID: 6615503

  • 21. Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk.
    Su Y, Xian H, Shi S, Zhang C, Manik SM, Mao J, Zhang G, Liao W, Wang Q, Liu H.
    BMC Biotechnol; 2016 Nov 21; 16(1):81. PubMed ID: 27871279
    [Abstract] [Full Text] [Related]

  • 22. Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium.
    Kelley RL, Reddy CA.
    J Bacteriol; 1986 Apr 21; 166(1):269-74. PubMed ID: 3957868
    [Abstract] [Full Text] [Related]

  • 23. Extracellular proteases produced by the wood-degrading fungus Phanerochaete chrysosporium under ligninolytic and non-ligninolytic conditions.
    Dass SB, Dosoretz CG, Reddy CA, Grethlein HE.
    Arch Microbiol; 1995 Apr 21; 163(4):254-8. PubMed ID: 7763133
    [Abstract] [Full Text] [Related]

  • 24. Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes.
    Rüttimann-Johnson C, Lamar RT.
    Appl Environ Microbiol; 1996 Oct 21; 62(10):3890-3. PubMed ID: 8967777
    [Abstract] [Full Text] [Related]

  • 25. Peroxidase-catalyzed oxidation of azo dyes: mechanism of disperse Yellow 3 degradation.
    Spadaro JT, Renganathan V.
    Arch Biochem Biophys; 1994 Jul 21; 312(1):301-7. PubMed ID: 8031141
    [Abstract] [Full Text] [Related]

  • 26. Arylglycerol-gamma-Formyl Ester as an Aromatic Ring Cleavage Product of Nonphenolic beta-O-4 Lignin Substructure Model Compounds Degraded by Coriolus versicolor.
    Kawai S, Umezawa T, Higuchi T.
    Appl Environ Microbiol; 1985 Dec 21; 50(6):1505-8. PubMed ID: 16346950
    [Abstract] [Full Text] [Related]

  • 27. Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium.
    Teramoto H, Tanaka H, Wariishi H.
    Appl Microbiol Biotechnol; 2004 Dec 21; 66(3):312-7. PubMed ID: 15448939
    [Abstract] [Full Text] [Related]

  • 28. Reprint of: Purification and Characterization of an Extracellular Mn(ll)-Dependent Peroxidase from the Lignin-Degrading Basidiomycete, Phanerochaete chrysosporium.
    K Glenn J, H Gold M.
    Arch Biochem Biophys; 2022 Sep 15; 726():109251. PubMed ID: 35680439
    [Abstract] [Full Text] [Related]

  • 29. Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation.
    Shary S, Kapich AN, Panisko EA, Magnuson JK, Cullen D, Hammel KE.
    Appl Environ Microbiol; 2008 Dec 15; 74(23):7252-7. PubMed ID: 18849459
    [Abstract] [Full Text] [Related]

  • 30. Lignin peroxidase: toward a clarification of its role in vivo.
    Sarkanen S, Razal RA, Piccariello T, Yamamoto E, Lewis NG.
    J Biol Chem; 1991 Feb 25; 266(6):3636-43. PubMed ID: 1995622
    [Abstract] [Full Text] [Related]

  • 31. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium.
    Hammel KE, Gai WZ, Green B, Moen MA.
    Appl Environ Microbiol; 1992 Jun 25; 58(6):1832-8. PubMed ID: 1622259
    [Abstract] [Full Text] [Related]

  • 32. Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions.
    Dhawale SW, Dhawale SS, Dean-Ross D.
    Appl Environ Microbiol; 1992 Sep 25; 58(9):3000-6. PubMed ID: 1444413
    [Abstract] [Full Text] [Related]

  • 33. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.
    Nousiainen P, Kontro J, Manner H, Hatakka A, Sipilä J.
    Fungal Genet Biol; 2014 Nov 25; 72():137-149. PubMed ID: 25108071
    [Abstract] [Full Text] [Related]

  • 34. Catalase activities of Phanerochaete chrysosporium are not coordinately produced with ligninolytic metabolism: catalases from a white-rot fungus.
    Kwon SI, Anderson AJ.
    Curr Microbiol; 2001 Jan 25; 42(1):8-11. PubMed ID: 11116389
    [Abstract] [Full Text] [Related]

  • 35. Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium.
    Reddy CA, D'Souza TM.
    FEMS Microbiol Rev; 1994 Mar 25; 13(2-3):137-52. PubMed ID: 8167033
    [Abstract] [Full Text] [Related]

  • 36. Metabolism of Radiolabeled beta-Guaiacyl Ether-Linked Lignin Dimeric Compounds by Phanerochaete chrysosporium.
    Weinstein DA, Krisnangkura K, Mayfield MB, Gold MH.
    Appl Environ Microbiol; 1980 Mar 25; 39(3):535-40. PubMed ID: 16345527
    [Abstract] [Full Text] [Related]

  • 37. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes.
    Bogan BW, Lamar RT.
    Appl Environ Microbiol; 1996 May 25; 62(5):1597-603. PubMed ID: 8633857
    [Abstract] [Full Text] [Related]

  • 38. Synergistic lignin degradation between Phanerochaete chrysosporium and Fenton chemistry is mediated through iron cycling and ligninolytic enzyme induction.
    van der Made JJA, Landis EA, Deans GT, Lai RA, Chandran K.
    Sci Total Environ; 2023 Dec 20; 905():166767. PubMed ID: 37660814
    [Abstract] [Full Text] [Related]

  • 39. New polymeric model substrates for the study of microbial ligninolysis.
    Kawai S, Jensen KA, Bao W, Hammel KE.
    Appl Environ Microbiol; 1995 Sep 20; 61(9):3407-14. PubMed ID: 7574649
    [Abstract] [Full Text] [Related]

  • 40. Substrate-induced H2O2 production in mycelia from the lignin-degrading fungus Phanerochaete chrysosporium.
    Greene RV, Gould JM.
    Biochem Biophys Res Commun; 1983 Nov 30; 117(1):275-81. PubMed ID: 6661224
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.