These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


418 related items for PubMed ID: 6620178

  • 1. Time course of release of catecholamine and other granular contents from perifused adrenal chromaffin cells of guinea-pig.
    Ito S.
    J Physiol; 1983 Aug; 341():153-67. PubMed ID: 6620178
    [Abstract] [Full Text] [Related]

  • 2. Exocytotic release of catecholamine from perfused adrenal gland of guinea-pig induced by veratridine.
    Ito S, Nakazato Y, Ohga A.
    Br J Pharmacol; 1980 Dec; 70(4):527-35. PubMed ID: 7470728
    [Abstract] [Full Text] [Related]

  • 3. Further evidence for the involvement of Na+ channels in the release of adrenal catecholamine: the effect of scorpion venom and grayanotoxin I.
    Ito S, Nakazato Y, Ohga A.
    Br J Pharmacol; 1981 Jan; 72(1):61-7. PubMed ID: 6261866
    [Abstract] [Full Text] [Related]

  • 4. Inhibitory effects of caffeine on secretagogue-induced catecholamine secretion from adrenal chromaffin cells of the guinea-pig.
    Nakazato Y, Tani Y, Teraoka H, Sugawara T, Asano T, Ohta T, Ito S.
    Br J Pharmacol; 1994 Mar; 111(3):935-41. PubMed ID: 8019771
    [Abstract] [Full Text] [Related]

  • 5. Catecholamines and dopamine-beta-hydroxylase secretion from perfused goat adrenal glands.
    Yamada Y, Nakazato Y, Ito S, Teraoka H, Ohga A.
    Q J Exp Physiol; 1988 Jan; 73(1):113-21. PubMed ID: 3347691
    [Abstract] [Full Text] [Related]

  • 6. An osmotic mechanism for exocytosis from dissociated chromaffin cells.
    Pollard HB, Pazoles CJ, Creutz CE, Scott JH, Zinder O, Hotchkiss A.
    J Biol Chem; 1984 Jan 25; 259(2):1114-21. PubMed ID: 6420400
    [Abstract] [Full Text] [Related]

  • 7. Characteristics of ATP-induced catecholamine secretion from adrenal chromaffin cells of the guinea-pig.
    Asano T, Otsuguro K, Ohta T, Sugawara T, Ito S, Nakazato Y.
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1995 Oct 25; 112(2):101-8. PubMed ID: 8788583
    [Abstract] [Full Text] [Related]

  • 8. 22Na+ uptake and catecholamine secretion by primary cultures of adrenal medulla cells.
    Amy C, Kirshner N.
    J Neurochem; 1982 Jul 25; 39(1):132-42. PubMed ID: 6283016
    [Abstract] [Full Text] [Related]

  • 9. Turnover and storage of newly synthesized adenine nucleotides in bovine adrenal medullary cell cultures.
    Corcoran JJ, Wilson SP, Kirshner N.
    J Neurochem; 1986 Jan 25; 46(1):151-60. PubMed ID: 3940276
    [Abstract] [Full Text] [Related]

  • 10. Catecholamine uptake into isolated adrenal chromaffin cells: inhibition of uptake by acetylcholine.
    Role LW, Perlman RL.
    Neuroscience; 1983 Nov 25; 10(3):987-96. PubMed ID: 6646441
    [Abstract] [Full Text] [Related]

  • 11. Parallel but separate release of catecholamines and acetylcholinesterase from stimulated adrenal chromaffin cells in culture.
    Mizobe F, Iwamoto M, Livett BG.
    J Neurochem; 1984 May 25; 42(5):1433-8. PubMed ID: 6707643
    [Abstract] [Full Text] [Related]

  • 12. Synergism between toxin-gamma from Brazilian scorpion Tityus serrulatus and veratridine in chromaffin cells.
    Conceicao IM, Lebrun I, Cano-Abad M, Gandia L, Hernandez-Guijo JM, Lopez MG, Villarroya M, Jurkiewicz A, Garcia AG.
    Am J Physiol; 1998 Jun 25; 274(6):C1745-54. PubMed ID: 9611141
    [Abstract] [Full Text] [Related]

  • 13. Proportional secretion of opioid peptides and catecholamines from adrenal chromaffin cells in culture.
    Wilson SP, Chang KJ, Viveros OH.
    J Neurosci; 1982 Aug 25; 2(8):1150-6. PubMed ID: 7108586
    [Abstract] [Full Text] [Related]

  • 14. Acetylcholinesterase activity, and neurofilament protein, and catecholamine synthesizing enzymes immunoreactivities in the mouse adrenal gland during postnatal development.
    Iwasa K, Oomori Y, Tanaka H.
    J Vet Med Sci; 1999 Jun 25; 61(6):621-9. PubMed ID: 10423683
    [Abstract] [Full Text] [Related]

  • 15. Tissue and plasma catecholamines and dopamine beta-hydroxylase activity of various animal species after neurogenic sympathetic stimulation.
    Arnaiz JM, García AG, Horga JF, Kirpekar SM.
    J Physiol; 1978 Dec 25; 285():515-29. PubMed ID: 745119
    [Abstract] [Full Text] [Related]

  • 16. Differential induction of gene expression of catecholamine biosynthetic enzymes and preferential increase in norepinephrine by forskolin.
    Hwang O, Kim ML, Lee JD.
    Biochem Pharmacol; 1994 Nov 16; 48(10):1927-34. PubMed ID: 7986204
    [Abstract] [Full Text] [Related]

  • 17. Voltage-independent catecholamine release mediated by the activation of muscarinic receptors in guinea-pig adrenal glands.
    Nakazato Y, Ohga A, Oleshansky M, Tomita U, Yamada Y.
    Br J Pharmacol; 1988 Jan 16; 93(1):101-9. PubMed ID: 3349226
    [Abstract] [Full Text] [Related]

  • 18. Inhibitory effects of tacrine and physostigmine on catecholamine secretion and membrane currents in guinea-pig adrenal chromaffin cells.
    Sugawara T, Kitamura N, Ohta T, Ito S, Nakazato Y.
    Fundam Clin Pharmacol; 1998 Jan 16; 12(3):279-85. PubMed ID: 9646060
    [Abstract] [Full Text] [Related]

  • 19. Mechanism of the effect of droperidol to induce catecholamine efflux from the adrenal medulla.
    Sumikawa K, Hirano H, Amakata Y, Kashimoto T, Wada A, Izumi F.
    Anesthesiology; 1985 Jan 16; 62(1):17-22. PubMed ID: 3966665
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.