These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Chondroid bone arises from mesenchymal stem cells in organ culture of mandibular condyles. Silbermann M, Reddi AH, Hand AR, Leapman R, von der Mark K, Franzen A. J Craniofac Genet Dev Biol; 1987; 7(1):59-79. PubMed ID: 3597722 [Abstract] [Full Text] [Related]
3. Transformation of fetal secondary cartilage into embryonic bone in organ cultures of human mandibular condyles. Ben-Ami Y, von der Mark K, Franzen A, de Bernard B, Lunazzi GC, Silbermann M. Cell Tissue Res; 1993 Feb; 271(2):317-22. PubMed ID: 8453657 [Abstract] [Full Text] [Related]
4. The in vitro behavior of fetal condylar cartilage in serum-free hormone-supplemented medium. Silbermann M, Tenenbaum H, Livne E, Leapman R, von der Mark K, Reddi AH. Bone; 1987 Feb; 8(2):117-26. PubMed ID: 3593608 [Abstract] [Full Text] [Related]
6. Chondrocyte and osteoblast differentiation stage-specific monoclonal antibodies as a tool to investigate the initial bone formation in developing chick embryo. Galotto M, Campanile G, Banfi A, Trugli M, Cancedda R. Eur J Cell Biol; 1995 Jun; 67(2):99-105. PubMed ID: 7664760 [Abstract] [Full Text] [Related]
10. Ultrastructural in vitro characterization of a porous hydroxyapatite/bone cell interface. Holden CM, Bernard GW. J Oral Implantol; 1990 Jun; 16(2):86-95. PubMed ID: 1963643 [Abstract] [Full Text] [Related]
11. An immunohistochemical study of the distribution of matrical proteins in the mandibular condyle of neonatal mice. I. Collagens. Silbermann M, von der Mark K. J Anat; 1990 Jun; 170():11-22. PubMed ID: 2254157 [Abstract] [Full Text] [Related]
12. Age-related changes in the role of matrix vesicles in the mandibular condylar cartilage. Livne E, Oliver C, Leapman RD, Rosenberg LC, Poole AR, Silbermann M. J Anat; 1987 Feb; 150():61-74. PubMed ID: 3308799 [Abstract] [Full Text] [Related]
13. Detailed examination of cartilage formation and endochondral ossification using human mesenchymal stem cells. Ichinose S, Yamagata K, Sekiya I, Muneta T, Tagami M. Clin Exp Pharmacol Physiol; 2005 Jul; 32(7):561-70. PubMed ID: 16026516 [Abstract] [Full Text] [Related]
14. Sequential synthesis of cartilage and bone marker proteins during transdifferentiation of mouse Meckel's cartilage chondrocytes in vitro. Ishizeki K, Hiraki Y, Kubo M, Nawa T. Int J Dev Biol; 1997 Feb; 41(1):83-9. PubMed ID: 9074940 [Abstract] [Full Text] [Related]
15. In vitro differentiation potential of the periosteal cells from a membrane bone, the quadratojugal of the embryonic chick. Fang J, Hall BK. Dev Biol; 1996 Dec 15; 180(2):701-12. PubMed ID: 8954738 [Abstract] [Full Text] [Related]
16. Osteoblasts develop from isolated fetal mouse chondrocytes when co-cultured in high density with brain tissue. Groot CG, Thesingh CW, Wassenaar AM, Scherft JP. In Vitro Cell Dev Biol Anim; 1994 Aug 15; 30A(8):547-54. PubMed ID: 7702653 [Abstract] [Full Text] [Related]
18. Studies on hormonal regulation of the growth of the craniofacial skeleton: III. Effects of 24,25 (OH)2D3 on cartilage growth in the mandibular condyle of suckling mice. Mirsky N, Silbermann M. J Craniofac Genet Dev Biol; 1984 Aug 15; 4(4):303-20. PubMed ID: 6335149 [Abstract] [Full Text] [Related]
19. Cartilage canals in the chicken embryo are involved in the process of endochondral bone formation within the epiphyseal growth plate. Blumer MJ, Longato S, Fritsch H. Anat Rec A Discov Mol Cell Evol Biol; 2004 Jul 15; 279(1):692-700. PubMed ID: 15224411 [Abstract] [Full Text] [Related]
20. A tissue culture system supporting cartilage cell differentiation, extracellular mineralization, and subsequent bone formation, using mouse condylar progenitor cells. Weiss A, von der Mark K, Silbermann M. Cell Differ; 1986 Sep 15; 19(2):103-13. PubMed ID: 3757036 [Abstract] [Full Text] [Related] Page: [Next] [New Search]