These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
144 related items for PubMed ID: 6651816
1. The possible role of ATP-dependent proteolysis on the solubilization of methemoglobin reductase during reticulocyte maturation. Raw I, DiFini F. Biochem Biophys Res Commun; 1983 Oct 31; 116(2):357-9. PubMed ID: 6651816 [Abstract] [Full Text] [Related]
2. Studies on methemoglobin reductase. Immunochemical similarity of soluble methemoglobin reductase and cytochrome b5 of human erythrocytes with NADH-cytochrome b5 reductase and cytochrome b5 of rat liver microsomes. Kuma F, Prough RA, Masters BS. Arch Biochem Biophys; 1976 Feb 31; 172(2):600-7. PubMed ID: 1259422 [No Abstract] [Full Text] [Related]
10. Cathepsin D in erythroid cells. Hultquist DE, Rodriguez C, Schafer DA. Prog Clin Biol Res; 1989 Dec 03; 319():93-101; discussion 102-6. PubMed ID: 2695941 [Abstract] [Full Text] [Related]
11. Membrane-bound cytochrome b5 reductase (methemoglobin reductase) in human erythrocytes. Study in normal and methemoglobinemic subjects. Choury D, Leroux A, Kaplan JC. J Clin Invest; 1981 Jan 03; 67(1):149-55. PubMed ID: 7451647 [Abstract] [Full Text] [Related]
12. Cytochrome b5-like hemoprotein/cytochrome b5 reductase complex in rat liver mitochondria has NADH-linked aquacobalamin reductase activity. Saido H, Watanabe F, Tamura Y, Miyatake K, Ito A, Yubisui T, Nakano Y. J Nutr; 1994 Jul 03; 124(7):1037-40. PubMed ID: 8027853 [Abstract] [Full Text] [Related]
13. The reducing ability of iron chelates by NADH-cytochrome B5 reductase or cytochrome B5 responsible for NADH-supported lipid peroxidation. Miura A, Tampo Y, Yonaha M. Biochem Mol Biol Int; 1995 Sep 03; 37(1):141-50. PubMed ID: 8653076 [Abstract] [Full Text] [Related]
14. Interaction of ferric complexes with NADH-cytochrome b5 reductase and cytochrome b5: lipid peroxidation, H2O2 generation, and ferric reduction. Yang MX, Cederbaum AI. Arch Biochem Biophys; 1996 Jul 01; 331(1):69-78. PubMed ID: 8660685 [Abstract] [Full Text] [Related]
15. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions. Golly I, Hlavica P. Biochim Biophys Acta; 1987 Jun 17; 913(2):219-27. PubMed ID: 3109485 [Abstract] [Full Text] [Related]
16. Redox cycling of bleomycin-Fe(III) and DNA degradation by isolated NADH-cytochrome b5 reductase: involvement of cytochrome b5. Mahmutoglu I, Kappus H. Mol Pharmacol; 1988 Oct 17; 34(4):578-83. PubMed ID: 2459594 [Abstract] [Full Text] [Related]
17. Exponential decay of cytochrome b5 and cytochrome b5 reductase during senescence of erythrocytes: relation to the increased methemoglobin content. Takeshita M, Tamura M, Yubisui T, Yoneyama Y. J Biochem; 1983 Mar 17; 93(3):931-4. PubMed ID: 6874674 [Abstract] [Full Text] [Related]
18. [Effect of age on the activity of hepatic mixed function oxidases in female rats]. Plewka D, Plewka A, Kamiński M, Gaździk T. Med Pr; 1988 Mar 17; 39(2):81-90. PubMed ID: 3210965 [Abstract] [Full Text] [Related]
19. [Effect of N-ethyl-N-nitrosourea on the liver ultrastructure. I. Activity of the cytochrome P-450-dependent hepatic monooxygenase system]. Kamiński M, Plewka A, Plewka D, Gaździk T, Czechowicz K, Urbańska D. Med Pr; 1986 Mar 17; 37(1):12-21. PubMed ID: 3088382 [Abstract] [Full Text] [Related]
20. Influence of oxygen on the microsomal electron transport system in Saccharomyces cerevisiae. Bertrand JC, Mattei G, Parra C, Giordani R, Gilewicz M. Biochimie; 1984 Mar 17; 66(7-8):583-8. PubMed ID: 6442167 [Abstract] [Full Text] [Related] Page: [Next] [New Search]