These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


240 related items for PubMed ID: 6651868

  • 1. Effect of phloretin on Na+-dependent D-glucose uptake by intestinal brush border membrane vesicles.
    Yokota K, Nishi Y, Takesue Y.
    Biochem Pharmacol; 1983 Nov 15; 32(22):3453-7. PubMed ID: 6651868
    [Abstract] [Full Text] [Related]

  • 2. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells.
    Hopfer U, Sigrist-Nelson K, Ammann E, Murer H.
    J Cell Physiol; 1976 Dec 15; 89(4):805-10. PubMed ID: 137908
    [Abstract] [Full Text] [Related]

  • 3. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium.
    Hilden S, Sacktor B.
    Am J Physiol; 1982 Apr 15; 242(4):F340-5. PubMed ID: 7065244
    [Abstract] [Full Text] [Related]

  • 4. Hydrogen ion-coupled transport of D-glucose by phlorizin-sensitive sugar carrier in intestinal brush-border membranes.
    Hoshi T, Takuwa N, Abe M, Tajima A.
    Biochim Biophys Acta; 1986 Oct 23; 861(3):483-8. PubMed ID: 3768358
    [Abstract] [Full Text] [Related]

  • 5. The Na+ gradient-dependent transport of D-glucose in renal brush border membranes.
    Aronson PS, Sacktor B.
    J Biol Chem; 1975 Aug 10; 250(15):6032-9. PubMed ID: 1150669
    [Abstract] [Full Text] [Related]

  • 6. 4-Azidophlorizin, a high affinity probe and photoaffinity label for the glucose transporter in brush border membranes.
    Gibbs EM, Hosang M, Reber BF, Semenza G, Diedrich DF.
    Biochim Biophys Acta; 1982 Jun 14; 688(2):547-56. PubMed ID: 7201853
    [Abstract] [Full Text] [Related]

  • 7. A Na+-dependent D-mannose transporter in the apical membrane of chicken small intestine epithelial cells.
    Cano M, Calonge ML, Peral MJ, Ilundáin AA.
    Pflugers Arch; 2001 Feb 14; 441(5):686-91. PubMed ID: 11294251
    [Abstract] [Full Text] [Related]

  • 8. 1-O-n-octyl-beta-D-glucopyranoside as a competitive inhibitor of Na+-dependent D-glucose cotransporter in the small intestine brush-border membrane.
    Vincenzini MT, Iantomasi T, Stio M, Treves C, Favilli F, Vanni P.
    Biochim Biophys Acta; 1987 Oct 02; 903(2):273-6. PubMed ID: 3651462
    [Abstract] [Full Text] [Related]

  • 9. Na+-independent D-glucose transport in rabbit renal basolateral membranes.
    Cheung PT, Hammerman MR.
    Am J Physiol; 1988 May 02; 254(5 Pt 2):F711-8. PubMed ID: 3364579
    [Abstract] [Full Text] [Related]

  • 10. Phlorizin increases the permeability of intestinal mucosal membrane to sodium.
    Dinda PK, Beck IT.
    Can J Physiol Pharmacol; 1987 Apr 02; 65(4):579-86. PubMed ID: 3607604
    [Abstract] [Full Text] [Related]

  • 11. Phlorizin as a probe of the small-intestinal Na+,D-glucose cotransporter. A model.
    Toggenburger G, Kessler M, Semenza G.
    Biochim Biophys Acta; 1982 Jun 14; 688(2):557-71. PubMed ID: 7201854
    [Abstract] [Full Text] [Related]

  • 12. Decreased Na+-gradient-dependent D-glucose transport in brush-border membrane vesicles from rabbits with experimental Fanconi syndrome.
    Yanase M, Orita Y, Okada N, Nakanishi T, Horio M, Ando A, Abe H.
    Biochim Biophys Acta; 1983 Aug 24; 733(1):95-101. PubMed ID: 6882758
    [Abstract] [Full Text] [Related]

  • 13. High-affinity phlorizin binding to brush border membranes from small intestine: identity with (a part of) the glucose transport system, dependence on Na +-gradient, partial purification.
    Tannenbaum C, Toggenburger G, Kessler M, Rothstein A, Semenza G.
    J Supramol Struct; 1977 Aug 24; 6(4):519-33. PubMed ID: 413010
    [Abstract] [Full Text] [Related]

  • 14. Common characteristics for Na+-dependent sugar transport in Caco-2 cells and human fetal colon.
    Blais A, Bissonnette P, Berteloot A.
    J Membr Biol; 1987 Aug 24; 99(2):113-25. PubMed ID: 3123697
    [Abstract] [Full Text] [Related]

  • 15. D-glucose and L-leucine transport by human intestinal brush-border membrane vesicles.
    Harig JM, Barry JA, Rajendran VM, Soergel KH, Ramaswamy K.
    Am J Physiol; 1989 Mar 24; 256(3 Pt 1):G618-23. PubMed ID: 2923218
    [Abstract] [Full Text] [Related]

  • 16. Changes in glucose uptake by and phlorizin binding to brush-border membrane vesicles of small intestine from streptozotocin-induced diabetic rats.
    Tsuji Y, Yamada K, Hosoya N, Takai K, Moriuchi S.
    J Nutr Sci Vitaminol (Tokyo); 1988 Jun 24; 34(3):327-34. PubMed ID: 3183781
    [Abstract] [Full Text] [Related]

  • 17. The mechanism of decreased Na+-dependent D-glucose transport in brush-border membrane vesicles from rabbit kidneys with experimental Fanconi syndrome.
    Orita Y, Fukuhara Y, Yanase M, Okada N, Nakanishi T, Horio M, Moriyama T, Ando A, Abe H.
    Biochim Biophys Acta; 1984 Apr 11; 771(2):195-200. PubMed ID: 6538438
    [Abstract] [Full Text] [Related]

  • 18. Kinetic characterization of Na+/D-mannose cotransport in dog kidney: comparison with Na+/D-glucose cotransport.
    Silverman M, Ho L.
    Biochim Biophys Acta; 1993 Nov 21; 1153(1):34-42. PubMed ID: 8241248
    [Abstract] [Full Text] [Related]

  • 19. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport.
    Debiec H, Cross HS, Peterlik M.
    J Nutr; 1991 Jan 21; 121(1):105-13. PubMed ID: 1992047
    [Abstract] [Full Text] [Related]

  • 20. Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal-lateral plasma membranes.
    Kinne R, Murer H, Kinne-Saffran E, Thees M, Sachs G.
    J Membr Biol; 1975 Jan 21; 21(3-4):375-95. PubMed ID: 1127684
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.