These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


134 related items for PubMed ID: 665210

  • 21. Effect of opening and draining the cochlea.
    Steele CR, Zais JG.
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 1):84-9. PubMed ID: 4019911
    [Abstract] [Full Text] [Related]

  • 22. Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane.
    Nilsen KE, Russell IJ.
    Nat Neurosci; 1999 Jul; 2(7):642-8. PubMed ID: 10404197
    [Abstract] [Full Text] [Related]

  • 23. A parametric study of cochlear input impedance.
    Puria S, Allen JB.
    J Acoust Soc Am; 1991 Jan; 89(1):287-309. PubMed ID: 2002170
    [Abstract] [Full Text] [Related]

  • 24. High-frequency electromotile responses in the cochlea.
    Grosh K, Zheng J, Zou Y, de Boer E, Nuttall AL.
    J Acoust Soc Am; 2004 May; 115(5 Pt 1):2178-84. PubMed ID: 15139629
    [Abstract] [Full Text] [Related]

  • 25. Timing of spike initiation in cochlear afferents: dependence on site of innervation.
    Ruggero MA, Rich NC.
    J Neurophysiol; 1987 Aug; 58(2):379-403. PubMed ID: 3655874
    [Abstract] [Full Text] [Related]

  • 26. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A, Oghalai JS.
    J Physiol; 2017 Jul 01; 595(13):4549-4561. PubMed ID: 28382742
    [Abstract] [Full Text] [Related]

  • 27. [Local pO2- and pH2-measurements with needle electrodes for the examination of the hydrogen maintenance and microcirculation of the cochleae (author's transl)].
    Maass B, Baumgärtl H, Lübbers DW.
    Arch Otorhinolaryngol; 1976 Nov 15; 214(2):109-24. PubMed ID: 1036681
    [Abstract] [Full Text] [Related]

  • 28. A mechano-electro-acoustical model for the cochlea: response to acoustic stimuli.
    Ramamoorthy S, Deo NV, Grosh K.
    J Acoust Soc Am; 2007 May 15; 121(5 Pt1):2758-73. PubMed ID: 17550176
    [Abstract] [Full Text] [Related]

  • 29. Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure.
    Scheibe F, Haupt H, Ludwig C.
    Hear Res; 1992 Nov 15; 63(1-2):19-25. PubMed ID: 1464569
    [Abstract] [Full Text] [Related]

  • 30. Effects of basilar membrane arch and radial tension on the travelling wave in gerbil cochlea.
    Chan WX, Yoon YJ.
    Hear Res; 2015 Sep 15; 327():136-42. PubMed ID: 26070425
    [Abstract] [Full Text] [Related]

  • 31. Change in endocochlear potential during experimental insertion of a simulated cochlear implant electrode in the guinea pig.
    Oshima H, Ikeda R, Nomura K, Yamazaki M, Hidaka H, Katori Y, Oshima T, Kawase T, Kobayashi T.
    Otol Neurotol; 2014 Feb 15; 35(2):234-40. PubMed ID: 24448282
    [Abstract] [Full Text] [Related]

  • 32. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells.
    Russell IJ, Sellick PM.
    J Physiol; 1983 May 15; 338():179-206. PubMed ID: 6875955
    [Abstract] [Full Text] [Related]

  • 33. Contribution of BK Ca2+-activated K+ channels to auditory neurotransmission in the Guinea pig cochlea.
    Skinner LJ, Enée V, Beurg M, Jung HH, Ryan AF, Hafidi A, Aran JM, Dulon D.
    J Neurophysiol; 2003 Jul 15; 90(1):320-32. PubMed ID: 12611976
    [Abstract] [Full Text] [Related]

  • 34. [Research on basilar membrane vibration of guinea pigs elicited by direct current pulse].
    Guo M, Ren T, Nuttall AL.
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1997 Oct 15; 32(5):259-63. PubMed ID: 10743087
    [Abstract] [Full Text] [Related]

  • 35. Cochlear model with three-dimensional fluid, inner sulcus and feed-forward mechanism.
    Steele CR, Lim KM.
    Audiol Neurootol; 1999 Oct 15; 4(3-4):197-203. PubMed ID: 10187930
    [Abstract] [Full Text] [Related]

  • 36. Evidence for electrically evoked travelling waves in the guinea pig cochlea.
    Kirk DL, Yates GK.
    Hear Res; 1994 Apr 15; 74(1-2):38-50. PubMed ID: 8040098
    [Abstract] [Full Text] [Related]

  • 37. Spread of cochlear excitation during stimulation with pulsed infrared radiation: inferior colliculus measurements.
    Richter CP, Rajguru SM, Matic AI, Moreno EL, Fishman AJ, Robinson AM, Suh E, Walsh JT.
    J Neural Eng; 2011 Oct 15; 8(5):056006. PubMed ID: 21828906
    [Abstract] [Full Text] [Related]

  • 38. Remote extracochlear versus intracochlear recordings in the guinea pig.
    Durrant JD, Ronis ML.
    Ann Otol Rhinol Laryngol; 1975 Oct 15; 84(1 Pt 1):88-93. PubMed ID: 1111437
    [Abstract] [Full Text] [Related]

  • 39. The effects of pressure on cochlear microphonics in experimentally induced hydropic ears in the guinea pig.
    Kawase T, Kobayashi T, Takasaka T, Shinkawa H.
    Eur Arch Otorhinolaryngol; 1990 Oct 15; 247(6):364-7. PubMed ID: 2278702
    [Abstract] [Full Text] [Related]

  • 40. [Blockage of cochlear aqueduct for examination of perilymph (guinea pig) (author's transl)].
    Bergmann K, Haupt H, Scheibe F, Rogge I.
    Arch Otorhinolaryngol; 1979 Oct 15; 224(3-4):257-65. PubMed ID: 526188
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.