These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Identification of N-acetyl-S-(2,5-dihydroxyphenyl)-L-cysteine as a urinary metabolite of benzene, phenol, and hydroquinone. Nerland DE, Pierce WM. Drug Metab Dispos; 1990; 18(6):958-61. PubMed ID: 1981544 [Abstract] [Full Text] [Related]
3. Benzene metabolism by reconstituted cytochromes P450 2B1 and 2E1 and its modulation by cytochrome b5, microsomal epoxide hydrolase, and glutathione transferases: evidence for an important role of microsomal epoxide hydrolase in the formation of hydroquinone. Snyder R, Chepiga T, Yang CS, Thomas H, Platt K, Oesch F. Toxicol Appl Pharmacol; 1993 Oct; 122(2):172-81. PubMed ID: 8211999 [Abstract] [Full Text] [Related]
6. Comparative studies of the in vitro metabolism and covalent binding of 14C-benzene by liver slices and microsomal fraction of mouse, rat, and human. Brodfuehrer JI, Chapman DE, Wilke TJ, Powis G. Drug Metab Dispos; 1990 Oct; 18(1):20-7. PubMed ID: 1970773 [Abstract] [Full Text] [Related]
10. Prostaglandin H synthase catalyzed oxidation of hydroquinone to a sulfhydryl-binding and DNA-damaging metabolite. Schlosser MJ, Shurina RD, Kalf GF. Chem Res Toxicol; 1990 Oct; 3(4):333-9. PubMed ID: 2133081 [Abstract] [Full Text] [Related]
11. Effect of the microsomal system on interconversions between hydroquinone, benzoquinone, oxygen activation, and lipid peroxidation. Soucek P, Ivan G, Pavel S. Chem Biol Interact; 2000 Apr 14; 126(1):45-61. PubMed ID: 10826653 [Abstract] [Full Text] [Related]
12. The use of liquid chromatography with dual-electrode electrochemical detection in the investigation of glutathione oxidation during benzene metabolism. Lunte SM, Kissinger PT. J Chromatogr; 1984 Dec 28; 317():579-88. PubMed ID: 6530454 [Abstract] [Full Text] [Related]
15. Benzene and phenol metabolism by mouse and rat liver microsomes. Schlosser PM, Bond JA, Medinsky MA. Carcinogenesis; 1993 Dec 28; 14(12):2477-86. PubMed ID: 8269615 [Abstract] [Full Text] [Related]
16. Effect of ascorbate on covalent binding of benzene and phenol metabolites to isolated tissue preparations. Smart RC, Zannoni VG. Toxicol Appl Pharmacol; 1985 Feb 28; 77(2):334-43. PubMed ID: 3919464 [Abstract] [Full Text] [Related]
17. Sequential oxidation and glutathione addition to 1,4-benzoquinone: correlation of toxicity with increased glutathione substitution. Lau SS, Hill BA, Highet RJ, Monks TJ. Mol Pharmacol; 1988 Dec 28; 34(6):829-36. PubMed ID: 3200250 [Abstract] [Full Text] [Related]
18. Benzene: a case study in parent chemical and metabolite interactions. Medinsky MA, Kenyon EM, Schlosser PM. Toxicology; 1995 Dec 28; 105(2-3):225-33. PubMed ID: 8571360 [Abstract] [Full Text] [Related]
19. Bone marrow stromal cell bioactivation and detoxification of the benzene metabolite hydroquinone: comparison of macrophages and fibroblastoid cells. Thomas DJ, Sadler A, Subrahmanyam VV, Siegel D, Reasor MJ, Wierda D, Ross D. Mol Pharmacol; 1990 Feb 28; 37(2):255-62. PubMed ID: 2154673 [Abstract] [Full Text] [Related]
20. Mechanism of microsomal metabolism of benzene to phenol. Hinson JA, Freeman JP, Potter DW, Mitchum RK, Evans FE. Mol Pharmacol; 1985 May 28; 27(5):574-7. PubMed ID: 3990679 [Abstract] [Full Text] [Related] Page: [Next] [New Search]