These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 6661531

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Magnetohydrodynamics of blood flow.
    Keltner JR, Roos MS, Brakeman PR, Budinger TF.
    Magn Reson Med; 1990 Oct; 16(1):139-49. PubMed ID: 2255234
    [Abstract] [Full Text] [Related]

  • 24. On the application of a constitutive equation for whole human blood.
    Rodkiewicz CM, Sinha P, Kennedy JS.
    J Biomech Eng; 1990 May; 112(2):198-206. PubMed ID: 2345451
    [Abstract] [Full Text] [Related]

  • 25. On two-phase model of pulsatile blood flow with entrance effects.
    Srivastava LM, Srivastava VP.
    Biorheology; 1983 May; 20(6):761-77. PubMed ID: 6661527
    [Abstract] [Full Text] [Related]

  • 26. Transient rheological behavior of blood in low-shear tube flow: velocity profiles and effective viscosity.
    Alonso C, Pries AR, Kiesslich O, Lerche D, Gaehtgens P.
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H25-32. PubMed ID: 7840268
    [Abstract] [Full Text] [Related]

  • 27. Contribution of erythrocytes to turbulent blood flow.
    Stein PD, Sabbah HN, Blick EF.
    Biorheology; 1975 Aug; 12(5):293-9. PubMed ID: 1203532
    [No Abstract] [Full Text] [Related]

  • 28. A three--dimensional dyadic Walburn-Schneck constitutive equation for blood.
    Easthope P.
    Biorheology; 1989 Aug; 26(1):37-44. PubMed ID: 2804273
    [Abstract] [Full Text] [Related]

  • 29. A method for matching the refractive index and kinematic viscosity of a blood analog for flow visualization in hydraulic cardiovascular models.
    Nguyen TT, Biadillah Y, Mongrain R, Brunette J, Tardif JC, Bertrand OF.
    J Biomech Eng; 2004 Aug; 126(4):529-35. PubMed ID: 15543873
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Time-dependent rheological behavior of blood at low shear in narrow vertical tubes.
    Alonso C, Pries AR, Gaehtgens P.
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H553-61. PubMed ID: 8368359
    [Abstract] [Full Text] [Related]

  • 34. Blood flow in straight and curved capillary glass tubes.
    Hung TC, Hung TK, Bugliarello G.
    J Biomech; 1979 Aug; 12(12):945-7. PubMed ID: 528553
    [No Abstract] [Full Text] [Related]

  • 35. Surface phenomena in hemorheology: their theoretical, experimental and clinical aspects.
    Ann N Y Acad Sci; 1983 Aug; 416():1-761. PubMed ID: 6587803
    [No Abstract] [Full Text] [Related]

  • 36. Shear stresses in fluid flow through curved tubes and their applications in extracorporeal circuit design.
    Patil MK.
    Med Biol Eng Comput; 1986 Jan; 24(1):100-4. PubMed ID: 3959604
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. A model for blood flow through a stenotic tube.
    Tandon PN, Rana UV, Kawahara M, Katiyar VK.
    Int J Biomed Comput; 1993 Jan; 32(1):61-78. PubMed ID: 8425753
    [Abstract] [Full Text] [Related]

  • 39. Rheogoniometric studies of whole human blood at shear rates down to 0.0009 sec-1. II. Mathematical interpretation.
    Huang CR, King RG, Copley AL.
    Biorheology; 1973 Mar; 10(1):23-8. PubMed ID: 4724174
    [No Abstract] [Full Text] [Related]

  • 40. A three-layer semi-empirical model for flow of blood and other particulate suspensions through narrow tubes.
    Gupta BB, Nigam KM, Jaffrin MY.
    J Biomech Eng; 1982 May; 104(2):129-35. PubMed ID: 7078127
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.