These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


101 related items for PubMed ID: 6673226

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Obtaining the shear stress versus shear rate relationship and yield stress of blood from capillary viscometry data by Tikhonov regularization.
    Yeow YL, Leong YK, Wickramasinghe SR, Han B.
    Biotechnol Prog; 2002; 18(4):879-84. PubMed ID: 12153325
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Effects of pulsatile shear stress on signaling mechanisms controlling nitric oxide production, endothelial nitric oxide synthase phosphorylation, and expression in ovine fetoplacental artery endothelial cells.
    Li Y, Zheng J, Bird IM, Magness RR.
    Endothelium; 2005; 12(1-2):21-39. PubMed ID: 16036314
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow.
    Quinlan NJ, Dooley PN.
    Ann Biomed Eng; 2007 Aug; 35(8):1347-56. PubMed ID: 17458700
    [Abstract] [Full Text] [Related]

  • 8. [In vitro study of regulation of shear stress on antithrombogenic potentials of endothelialized polyurethane small diameter artificial blood vessel].
    Yang Z, Tao J, Wang J, Tu C, Feng L, Pan S, Ma H.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):621-5. PubMed ID: 18693444
    [Abstract] [Full Text] [Related]

  • 9. Numerical estimation of blood damage in artificial organs.
    Goubergrits L, Affeld K.
    Artif Organs; 2004 May; 28(5):499-507. PubMed ID: 15113346
    [Abstract] [Full Text] [Related]

  • 10. Prediction of hemolysis in turbulent shear orifice flow.
    Tamagawa M, Akamatsu T, Saitoh K.
    Artif Organs; 1996 Jun; 20(6):553-9. PubMed ID: 8817954
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Changes in surface roughness of erythrocytes due to shear stress: atomic force microscopic visualization of the surface microstructure.
    Ohta Y, Otsuka C, Okamoto H.
    J Artif Organs; 2003 Jun; 6(2):101-5. PubMed ID: 14598110
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER.
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.