These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Length-dependence of flexural rigidity as a result of anisotropic elastic properties of microtubules. Li C, Ru CQ, Mioduchowski A. Biochem Biophys Res Commun; 2006 Oct 27; 349(3):1145-50. PubMed ID: 16965761 [Abstract] [Full Text] [Related]
4. Nanomechanics of microtubules. Kis A, Kasas S, Babić B, Kulik AJ, Benoît W, Briggs GA, Schönenberger C, Catsicas S, Forró L. Phys Rev Lett; 2002 Dec 09; 89(24):248101. PubMed ID: 12484982 [Abstract] [Full Text] [Related]
5. Length dependence of the rigidity of microtubules in small networks. Sharma A, Vershinin M. Biochem Biophys Res Commun; 2020 Aug 20; 529(2):303-305. PubMed ID: 32703427 [Abstract] [Full Text] [Related]
6. Re-examination of the polarity of microtubules and sheets decorated with kinesin motor domain. Hirose K, Fan J, Amos LA. J Mol Biol; 1995 Aug 18; 251(3):329-33. PubMed ID: 7650735 [Abstract] [Full Text] [Related]
7. Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. Venier P, Maggs AC, Carlier MF, Pantaloni D. J Biol Chem; 1994 May 06; 269(18):13353-60. PubMed ID: 7909808 [Abstract] [Full Text] [Related]
9. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Kurachi M, Hoshi M, Tashiro H. Cell Motil Cytoskeleton; 1995 May 06; 30(3):221-8. PubMed ID: 7758138 [Abstract] [Full Text] [Related]
11. Molecular organization and in vivo function of the cytoskeleton of amphibian erythrocytes. Lee KG, Kerr LM, Cohen WD. Cell Motil Cytoskeleton; 2007 Aug 06; 64(8):621-8. PubMed ID: 17508361 [Abstract] [Full Text] [Related]
12. Temperature dependence of the flexural rigidity of single microtubules. Kawaguchi K, Ishiwata S, Yamashita T. Biochem Biophys Res Commun; 2008 Feb 15; 366(3):637-42. PubMed ID: 18068120 [Abstract] [Full Text] [Related]
13. A bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity. Janson ME, Dogterom M. Biophys J; 2004 Oct 15; 87(4):2723-36. PubMed ID: 15454464 [Abstract] [Full Text] [Related]
14. Torsion of the central pair microtubules in eukaryotic flagella due to bending-driven lateral buckling. Li C, Ru CQ, Mioduchowski A. Biochem Biophys Res Commun; 2006 Dec 08; 351(1):159-64. PubMed ID: 17055460 [Abstract] [Full Text] [Related]
15. Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules. Felgner H, Frank R, Biernat J, Mandelkow EM, Mandelkow E, Ludin B, Matus A, Schliwa M. J Cell Biol; 1997 Sep 08; 138(5):1067-75. PubMed ID: 9281584 [Abstract] [Full Text] [Related]
16. Tubulin protofilaments and kinesin-dependent motility. Kamimura S, Mandelkow E. J Cell Biol; 1992 Aug 08; 118(4):865-75. PubMed ID: 1500429 [Abstract] [Full Text] [Related]
17. The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates. Walsh CJ. Eur J Cell Biol; 2007 Feb 08; 86(2):85-98. PubMed ID: 17189659 [Abstract] [Full Text] [Related]
18. Temperature-dependent elasticity of microtubules. Kis A, Kasas S, Kulik AJ, Catsicas S, Forró L. Langmuir; 2008 Jun 17; 24(12):6176-81. PubMed ID: 18494514 [Abstract] [Full Text] [Related]
19. Flexural rigidity of individual microtubules measured by a buckling force with optical traps. Kikumoto M, Kurachi M, Tosa V, Tashiro H. Biophys J; 2006 Mar 01; 90(5):1687-96. PubMed ID: 16339879 [Abstract] [Full Text] [Related]
20. Analysis of the migration behaviour of single microtubules in electric fields. Stracke R, Böhm KJ, Wollweber L, Tuszynski JA, Unger E. Biochem Biophys Res Commun; 2002 Apr 26; 293(1):602-9. PubMed ID: 12054645 [Abstract] [Full Text] [Related] Page: [Next] [New Search]