These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
173 related items for PubMed ID: 6683324
41. Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules. Yoneda A, Ito T, Higaki T, Kutsuna N, Saito T, Ishimizu T, Osada H, Hasezawa S, Matsui M, Demura T. Plant J; 2010 Nov; 64(4):657-67. PubMed ID: 21070417 [Abstract] [Full Text] [Related]
42. Microtubules and guard-cell morphogenesis in Zea mays L. Galatis B. J Cell Sci; 1980 Oct; 45():211-44. PubMed ID: 7462346 [No Abstract] [Full Text] [Related]
43. Cellulose fibrils formation and organisation of cytoskeleton during encystment are essential for Acanthamoeba cyst wall architecture. Garajová M, Mrva M, Vaškovicová N, Martinka M, Melicherová J, Valigurová A. Sci Rep; 2019 Mar 14; 9(1):4466. PubMed ID: 30872791 [Abstract] [Full Text] [Related]
44. CYTOPLASMIC MICROTUBULE AND WALL MICROFIBRIL ORIENTATION IN ROOT HAIRS OF RADISH. Newcomb EH, Bonnett HT. J Cell Biol; 1965 Dec 01; 27(3):575-89. PubMed ID: 19866695 [Abstract] [Full Text] [Related]
45. Observations of microtubules and microtubule-microfilament associations in osmotically treated cells of Micrasterias denticulata Bréb. Neuhaus-Url G, Kiermayer O. Eur J Cell Biol; 1982 Jun 01; 27(2):206-12. PubMed ID: 6889505 [Abstract] [Full Text] [Related]
46. The cytoskeleton underlying side walls and cross walls in plants: molecules and macromolecular assemblies. Lloyd CW, Clayton L, Dawson PJ, Doonan JH, Hulme JS, Roberts IN, Wells B. J Cell Sci Suppl; 1985 Jun 01; 2():143-55. PubMed ID: 3867670 [Abstract] [Full Text] [Related]
47. Regulation of anisotropic cell expansion in higher plants. Crowell EF, Gonneau M, Vernhettes S, Höfte H. C R Biol; 2010 Apr 01; 333(4):320-4. PubMed ID: 20371106 [Abstract] [Full Text] [Related]
48. COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Roudier F, Fernandez AG, Fujita M, Himmelspach R, Borner GH, Schindelman G, Song S, Baskin TI, Dupree P, Wasteneys GO, Benfey PN. Plant Cell; 2005 Jun 01; 17(6):1749-63. PubMed ID: 15849274 [Abstract] [Full Text] [Related]
49. Microtubules are at the tips of root hairs and form helical patterns corresponding to inner wall fibrils. Lloyd CW, Wells B. J Cell Sci; 1985 Apr 01; 75():225-38. PubMed ID: 4044674 [Abstract] [Full Text] [Related]
50. Role of cortical microtubules in the orientation of cellulose microfibril deposition in higher-plant cells. Hasezawa S, Nozaki H. Protoplasma; 1999 Apr 01; 209(1-2):98-104. PubMed ID: 18987798 [Abstract] [Full Text] [Related]
51. Gravity-induced reorientation of cortical microtubules observed in vivo. Himmelspach R, Wymer CL, Lloyd CW, Nick P. Plant J; 1999 May 01; 18(4):449-53. PubMed ID: 11536906 [Abstract] [Full Text] [Related]
52. Changes in microtubule arrays during the differentiation of cortical root cells of Raphanus sativus. Traas JA, Braat P, Derksen JW. Eur J Cell Biol; 1984 Jul 01; 34(2):229-38. PubMed ID: 6383829 [Abstract] [Full Text] [Related]
53. A survey of cellulose microfibril patterns in dividing, expanding, and differentiating cells of Arabidopsis thaliana. Fujita M, Wasteneys GO. Protoplasma; 2014 May 01; 251(3):687-98. PubMed ID: 24169947 [Abstract] [Full Text] [Related]
54. Research note: Deposition patterns of cellulose microfibrils in flange wall ingrowths of transfer cells indicate clear parallels with those of secondary wall thickenings. Talbot MJ, Wasteneys G, McCurdy DW, Offler CE. Funct Plant Biol; 2007 May 01; 34(4):307-313. PubMed ID: 32689357 [Abstract] [Full Text] [Related]
55. Patterns of actin filaments during cell shaping in developing mesophyll of wheat (Triticum aestivum L.). Jung G, Wernicke W. Eur J Cell Biol; 1991 Oct 01; 56(1):139-46. PubMed ID: 1724752 [Abstract] [Full Text] [Related]
56. Regulation of growth anisotropy in well-watered and water-stressed maize roots. II. Role Of cortical microtubules and cellulose microfibrils. Baskin TI, Meekes HT, Liang BM, Sharp RE. Plant Physiol; 1999 Feb 01; 119(2):681-92. PubMed ID: 9952465 [Abstract] [Full Text] [Related]
57. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis. Xiao C, Zhang T, Zheng Y, Cosgrove DJ, Anderson CT. Plant Physiol; 2016 Jan 01; 170(1):234-49. PubMed ID: 26527657 [Abstract] [Full Text] [Related]
58. Cortical microtubules optimize cell-wall crystallinity to drive unidirectional growth in Arabidopsis. Fujita M, Himmelspach R, Hocart CH, Williamson RE, Mansfield SD, Wasteneys GO. Plant J; 2011 Jun 01; 66(6):915-28. PubMed ID: 21535258 [Abstract] [Full Text] [Related]
59. Structure, synthesis and orientation of microfibrils. VII. Microtubule reassembly in vivo after cold treatment in Oocystis and its relevance to microfibril orientation. Robinson DG, Quader H. Eur J Cell Biol; 1980 Jun 01; 21(2):229-30. PubMed ID: 7398665 [Abstract] [Full Text] [Related]
60. OsKinesin-13A is an active microtubule depolymerase involved in glume length regulation via affecting cell elongation. Deng ZY, Liu LT, Li T, Yan S, Kuang BJ, Huang SJ, Yan CJ, Wang T. Sci Rep; 2015 Mar 25; 5():9457. PubMed ID: 25807460 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]