These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 669896
1. Laminar separation of light-evoked K+ flux and field potentials in frog retina. Karwoski J, Criswell MH, Proenza LM. Invest Ophthalmol Vis Sci; 1978 Jul; 17(7):678-82. PubMed ID: 669896 [Abstract] [Full Text] [Related]
3. [Extracellular potassium in the frog retina and its light-induced changes]. Bykov KA, Dmitriev AV, Skachkov SN. Fiziol Zh SSSR Im I M Sechenova; 1984 Oct; 70(10):1381-7. PubMed ID: 6334619 [Abstract] [Full Text] [Related]
4. Light-evoked changes in extracellular potassium concentration in munpuppy retina. Karwoski CJ, Proenza LM. Brain Res; 1978 Mar 10; 142(3):515-30. PubMed ID: 638748 [Abstract] [Full Text] [Related]
5. Light-evoked increases in [K+]o in proximal portion of the dark-adapted cat retina. Frishman LJ, Steinberg RH. J Neurophysiol; 1989 Jun 10; 61(6):1233-43. PubMed ID: 2746323 [Abstract] [Full Text] [Related]
6. The in vitro frog pigment epithelial cell hyperpolarization in response to light. Oakley B, Steinberg RH, Miller SS, Nilsson SE. Invest Ophthalmol Vis Sci; 1977 Aug 10; 16(8):771-4. PubMed ID: 885686 [Abstract] [Full Text] [Related]
7. Effects of cAMP and IBMX on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses. Nao-i N, Gallemore RP, Steinberg RH. Invest Ophthalmol Vis Sci; 1990 Jan 10; 31(1):54-66. PubMed ID: 1688834 [Abstract] [Full Text] [Related]
8. Light-evoked changes in [K+]o in proximal portion of light-adapted cat retina. Frishman LJ, Yamamoto F, Bogucka J, Steinberg RH. J Neurophysiol; 1992 May 10; 67(5):1201-12. PubMed ID: 1317916 [Abstract] [Full Text] [Related]
9. M-wave of the toad electroretinogram. Katz BJ, Wen R, Zheng JB, Xu ZA, Oakley B. J Neurophysiol; 1991 Dec 10; 66(6):1927-40. PubMed ID: 1812226 [Abstract] [Full Text] [Related]
10. Depth-marking the proximal negative response in the pigeon retina. Hayes BP, Holden AL. J Comp Neurol; 1978 Jul 01; 180(1):193-201. PubMed ID: 649787 [Abstract] [Full Text] [Related]
11. Microelectrode depth study of electroretinographic b- and d-waves in frog retina. Yanagida T, Koshimizu M, Kawasaki K, Yonemura D. Jpn J Ophthalmol; 1986 Jul 01; 30(3):298-305. PubMed ID: 3491242 [Abstract] [Full Text] [Related]
16. Effects of dopamine on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses. Gallemore RP, Steinberg RH. Invest Ophthalmol Vis Sci; 1990 Jan 01; 31(1):67-80. PubMed ID: 2298543 [Abstract] [Full Text] [Related]
17. Extracellular K+ activity changes related to electroretinogram components. II. Rabbit (E-type) retinas. Dick E, Miller RF, Bloomfield S. J Gen Physiol; 1985 Jun 01; 85(6):911-31. PubMed ID: 2410539 [Abstract] [Full Text] [Related]
18. Current source density analysis of retinal field potentials. II. Pharmacological analysis of the b-wave and M-wave. Xu X, Karwoski CJ. J Neurophysiol; 1994 Jul 01; 72(1):96-105. PubMed ID: 7965036 [Abstract] [Full Text] [Related]
19. Extracellular K+ activity changes related to electroretinogram components. I. Amphibian (I-type) retinas. Dick E, Miller RF. J Gen Physiol; 1985 Jun 01; 85(6):885-909. PubMed ID: 3926945 [Abstract] [Full Text] [Related]