These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 6704427

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Flicker spectroscopy of erythrocytes. A sensitive method to study subtle changes of membrane bending stiffness.
    Fricke K, Wirthensohn K, Laxhuber R, Sackmann E.
    Eur Biophys J; 1986; 14(2):67-81. PubMed ID: 3816703
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Viscoelastic properties of erythrocyte membranes in high-frequency electric fields.
    Engelhardt H, Gaub H, Sackmann E.
    Nature; 1986; 307(5949):378-80. PubMed ID: 6694733
    [Abstract] [Full Text] [Related]

  • 6. Extensional flow of erythrocyte membrane from cell body to elastic tether. I. Analysis.
    Hochmuth RM, Evans EA.
    Biophys J; 1982 Jul; 39(1):71-81. PubMed ID: 7104453
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Extensional flow of erythrocyte membrane from cell body to elastic tether. II. Experiment.
    Hochmuth RM, Wiles HC, Evans EA, McCown JT.
    Biophys J; 1982 Jul; 39(1):83-9. PubMed ID: 7104454
    [Abstract] [Full Text] [Related]

  • 9. Microwave dielectric measurements of erythrocyte suspensions.
    Bao JZ, Davis CC, Swicord ML.
    Biophys J; 1994 Jun; 66(6):2173-80. PubMed ID: 8075351
    [Abstract] [Full Text] [Related]

  • 10. A study of the dynamic properties of the human red blood cell membrane using quasi-elastic light-scattering spectroscopy.
    Tishler RB, Carlson FD.
    Biophys J; 1993 Dec; 65(6):2586-600. PubMed ID: 8312494
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Temperature dependence of the viscoelastic recovery of red cell membrane.
    Hochmuth RM, Buxbaum KL, Evans EA.
    Biophys J; 1980 Jan; 29(1):177-82. PubMed ID: 7260246
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Mechanical fragility of erythrocyte membrane in neonates and adults.
    Böhler T, Leo A, Stadler A, Linderkamp O.
    Pediatr Res; 1992 Jul; 32(1):92-6. PubMed ID: 1635851
    [Abstract] [Full Text] [Related]

  • 15. Elasticity of the human red blood cell skeleton.
    Lenormand G, Hénon S, Richert A, Siméon J, Gallet F.
    Biorheology; 2003 Jul; 40(1-3):247-51. PubMed ID: 12454412
    [Abstract] [Full Text] [Related]

  • 16. Elastic energy of curvature-driven bump formation on red blood cell membrane.
    Waugh RE.
    Biophys J; 1996 Feb; 70(2):1027-35. PubMed ID: 8789121
    [Abstract] [Full Text] [Related]

  • 17. Assay of red cell membrane deformability with some applications.
    Baker RF, Clark LJ.
    Biomed Biochim Acta; 1983 Feb; 42(11-12):S91-6. PubMed ID: 6675722
    [Abstract] [Full Text] [Related]

  • 18. Membrane flickering of the human erythrocyte: physical and chemical effectors.
    Puckeridge M, Chapman BE, Conigrave AD, Kuchel PW.
    Eur Biophys J; 2014 May; 43(4-5):169-77. PubMed ID: 24668224
    [Abstract] [Full Text] [Related]

  • 19. Simulation of shape changes and adhesion phenomena in an elastic model of erythrocytes.
    Leibler S, Maggs AC.
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6433-5. PubMed ID: 2385601
    [Abstract] [Full Text] [Related]

  • 20. Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence.
    Evans J, Gratzer W, Mohandas N, Parker K, Sleep J.
    Biophys J; 2008 May 15; 94(10):4134-44. PubMed ID: 18234829
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.