These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
79 related items for PubMed ID: 6706909
21. Increase of cardiac work is associated with decrease of mitochondrial NADH. Ashruf JF, Coremans JM, Bruining HA, Ince C. Am J Physiol; 1995 Sep; 269(3 Pt 2):H856-62. PubMed ID: 7573528 [Abstract] [Full Text] [Related]
22. [14C]deoxyglucose incorporation into rat brain regions during hypothalamic or peripheral thermal stimulation. Morimoto A, Murakami N. Am J Physiol; 1985 Jan; 248(1 Pt 2):R84-92. PubMed ID: 3970189 [Abstract] [Full Text] [Related]
23. Metabolites of 2-deoxy-[14C]glucose in plasma and brain: influence on rate of glucose utilization determined with deoxyglucose method in rat brain. Dienel GA, Cruz NF, Sokoloff L. J Cereb Blood Flow Metab; 1993 Mar; 13(2):315-27. PubMed ID: 8436625 [Abstract] [Full Text] [Related]
24. NADH videofluorimetry to monitor the energy state of skeletal muscle in vivo. van der Laan L, Coremans A, Ince C, Bruining HA. J Surg Res; 1998 Feb 01; 74(2):155-60. PubMed ID: 9587354 [Abstract] [Full Text] [Related]
25. Relative cerebral glucose metabolism evoked by dental-pulp stimulation in the rat. Shetter AG, Sweet WH. J Neurosurg; 1979 Jul 01; 51(1):12-7. PubMed ID: 448408 [Abstract] [Full Text] [Related]
26. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Williamson DH, Lund P, Krebs HA. Biochem J; 1967 May 01; 103(2):514-27. PubMed ID: 4291787 [Abstract] [Full Text] [Related]
27. Simultaneous determination of local cerebral glucose utilization and blood flow by carbon-14 double-label autoradiography: method of procedure and validation studies in the rat. Ginsberg MD, Smith DW, Wachtel MS, Gonzalez-Carvajal M, Busto R. J Cereb Blood Flow Metab; 1986 Jun 01; 6(3):273-85. PubMed ID: 3711156 [Abstract] [Full Text] [Related]
28. Effect of topically administered epinephrine, norepinephrine, and acetylcholine on cerebrocortical circulation and the NAD/NADH redox state. Dóra E, Kovách AG. J Cereb Blood Flow Metab; 1983 Jun 01; 3(2):161-9. PubMed ID: 6841463 [Abstract] [Full Text] [Related]
29. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation. Tsuge Y, Uematsu K, Yamamoto S, Suda M, Yukawa H, Inui M. Appl Microbiol Biotechnol; 2015 Jul 01; 99(13):5573-82. PubMed ID: 25808520 [Abstract] [Full Text] [Related]
30. Epicardial image analysis using a desk top computer. Comparison of epicardial flow distribution and NADH-fluorescence pattern. Roesen R, Panzner B, Klaus W. Adv Myocardiol; 1985 Jul 01; 6():217-31. PubMed ID: 3838818 [Abstract] [Full Text] [Related]
31. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Zhu XH, Lu M, Lee BY, Ugurbil K, Chen W. Proc Natl Acad Sci U S A; 2015 Mar 03; 112(9):2876-81. PubMed ID: 25730862 [Abstract] [Full Text] [Related]
32. Autoradiographic maps of regional brain glucose consumption in resting, awake rats using (14C) 2-deoxyglucose. Schwartz WJ, Sharp FR. J Comp Neurol; 1978 Jan 15; 177(2):335-59. PubMed ID: 621295 [Abstract] [Full Text] [Related]
33. Ischemic areas in perfused rat hearts: measurement by NADH fluorescence photography. Barlow CH, Chance B. Science; 1976 Sep 03; 193(4256):909-10. PubMed ID: 181843 [Abstract] [Full Text] [Related]
34. Direct chemical measurement of the lambda of the lumped constant of the [14C]deoxyglucose method in rat brain: effects of arterial plasma glucose level on the distribution spaces of [14C]deoxyglucose and glucose and on lambda. Mori K, Cruz N, Dienel G, Nelson T, Sokoloff L. J Cereb Blood Flow Metab; 1989 Jun 03; 9(3):304-14. PubMed ID: 2715202 [Abstract] [Full Text] [Related]
35. In situ NADH laser fluorimetry of rat fast- and slow-twitch muscles during tetanus. Duboc D, Muffat-Joly M, Renault G, Degeorges M, Toussaint M, Pocidalo JJ. J Appl Physiol (1985); 1988 Jun 03; 64(6):2692-5. PubMed ID: 3403452 [Abstract] [Full Text] [Related]
36. NADH spectrofluorometry of rat skin. Pappajohn DJ, Penneys R, Chance B. J Appl Physiol; 1972 Nov 03; 33(5):684-7. PubMed ID: 4344165 [No Abstract] [Full Text] [Related]
37. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW. Am J Physiol; 1995 Jan 03; 268(1 Pt 2):H82-91. PubMed ID: 7840306 [Abstract] [Full Text] [Related]
38. Distribution of mitochondrial NADH fluorescence lifetimes: steady-state kinetics of matrix NADH interactions. Blinova K, Carroll S, Bose S, Smirnov AV, Harvey JJ, Knutson JR, Balaban RS. Biochemistry; 2005 Feb 22; 44(7):2585-94. PubMed ID: 15709771 [Abstract] [Full Text] [Related]
39. Age-related metabolic fatigue during low glucose conditions in rat hippocampus. Galeffi F, Shetty PK, Sadgrove MP, Turner DA. Neurobiol Aging; 2015 Feb 22; 36(2):982-92. PubMed ID: 25443286 [Abstract] [Full Text] [Related]
40. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Fjeld CC, Birdsong WT, Goodman RH. Proc Natl Acad Sci U S A; 2003 Aug 05; 100(16):9202-7. PubMed ID: 12872005 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]