These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


158 related items for PubMed ID: 670702

  • 1. Trinitrophenylated red cells (E-TNP) as a model for antibody-independent activation of the complement system via the classical pathway.
    Loos M, Thesen R.
    J Immunol; 1978 Jul; 121(1):24-8. PubMed ID: 670702
    [Abstract] [Full Text] [Related]

  • 2. Surface modulation of classical pathway activation: C2 and C3 convertase formation and regulation on sheep, guinea pig, and human erythrocytes.
    Brown EJ, Ramsey J, Hammer CH, Frank MM.
    J Immunol; 1983 Jul; 131(1):403-8. PubMed ID: 6602833
    [Abstract] [Full Text] [Related]

  • 3. Preparation of trinitrophenylated red cells for antibody independent lysis by complement.
    Thesen R, Back W, Loos M.
    J Immunol Methods; 1978 Jul; 20():201-9. PubMed ID: 649960
    [Abstract] [Full Text] [Related]

  • 4. Activation of the human classical complement pathway by a mouse monoclonal hybrid IgG1-2a monovalent anti-TNP antibody bound to TNP-conjugated cells.
    Couderc J, Kazatchkine MD, Ventura M, Duc HT, Maillet F, Thobie N, Liacopoulos P.
    J Immunol; 1985 Jan; 134(1):486-91. PubMed ID: 3917282
    [Abstract] [Full Text] [Related]

  • 5. EAC4 and EAC14 production without purified Ci.
    Linscott WD.
    J Immunol; 1975 Dec; 115(6):1625-30. PubMed ID: 241767
    [Abstract] [Full Text] [Related]

  • 6. Lysis of sensitized sheep erythrocytes in human sera deficient in the second component of complement.
    Knutzen Steuer KL, Sloan LB, Oglesby TJ, Farries TC, Nickells MW, Densen P, Harley JB, Atkinson JP.
    J Immunol; 1989 Oct 01; 143(7):2256-61. PubMed ID: 2506280
    [Abstract] [Full Text] [Related]

  • 7. Requirement for the alternative pathway as well as C4 and C2 in complement-dependent hemolysis via the lectin pathway.
    Suankratay C, Zhang XH, Zhang Y, Lint TF, Gewurz H.
    J Immunol; 1998 Mar 15; 160(6):3006-13. PubMed ID: 9510205
    [Abstract] [Full Text] [Related]

  • 8. Leukocyte-derived complement inhibitor. IV. The functional properties of C1 bound to erythrocytes pretreated with leukocyte culture supernatant.
    Bernard A, Walter W, Teshima H, Boumsell L, Good RA, Day NK.
    J Immunol; 1976 Oct 15; 117(4):1117-26. PubMed ID: 977945
    [Abstract] [Full Text] [Related]

  • 9. Effect of concanavalin A on the classical complement pathway.
    Langone JJ, Boyle MD, Borsos T.
    J Immunol; 1977 May 15; 118(5):1622-5. PubMed ID: 858916
    [Abstract] [Full Text] [Related]

  • 10. Antibody-independent activation of C1. II. Evidence for two classes of nonimmune activators of the classical pathway of complement.
    Peitsch MC, Kovacsovics TJ, Tschopp J, Isliker H.
    J Immunol; 1987 Mar 15; 138(6):1871-6. PubMed ID: 3029223
    [Abstract] [Full Text] [Related]

  • 11. Evidence for restriction of the ability of complement to lyse homologous erythrocytes.
    Houle JJ, Hoffmann EM.
    J Immunol; 1984 Sep 15; 133(3):1444-52. PubMed ID: 6430999
    [Abstract] [Full Text] [Related]

  • 12. The C4 and C2 but not C1 components of complement are responsible for the complement activation triggered by the Ra-reactive factor.
    Ji YH, Matsushita M, Okada H, Fujita T, Kawakami M.
    J Immunol; 1988 Dec 15; 141(12):4271-5. PubMed ID: 3058802
    [Abstract] [Full Text] [Related]

  • 13. Surface-bound capsular polysaccharide of type Ia group B Streptococcus mediates C1 binding and activation of the classic complement pathway.
    Levy NJ, Kasper DL.
    J Immunol; 1986 Jun 01; 136(11):4157-62. PubMed ID: 3517165
    [Abstract] [Full Text] [Related]

  • 14. Activation of the first component of complement, C1, by a monoclonal antibody recognizing the C chain of C1q.
    Heinz HP, Burger R, Golan MD, Loos M.
    J Immunol; 1984 Feb 01; 132(2):804-8. PubMed ID: 6606678
    [Abstract] [Full Text] [Related]

  • 15. The effect of specific antibody on antibody-independent interactions between E. coli J5 and human complement.
    Betz SJ, Page N, Estrade C, Isliker H.
    J Immunol; 1982 Feb 01; 128(2):707-11. PubMed ID: 7033382
    [Abstract] [Full Text] [Related]

  • 16. Consumption of classical complement components by heart subcellular membranes in vitro and in patients after acute myocardial infarction.
    Pinckard RN, Olson MS, Giclas PC, Terry R, Boyer JT, O'Rourke RA.
    J Clin Invest; 1975 Sep 01; 56(3):740-50. PubMed ID: 808560
    [Abstract] [Full Text] [Related]

  • 17. Antibody-independent C1 activation by E. coli.
    Tenner AJ, Ziccardi RJ, Cooper NR.
    J Immunol; 1984 Aug 01; 133(2):886-91. PubMed ID: 6376630
    [Abstract] [Full Text] [Related]

  • 18. Antibody-independent killing of gram-negative bacteria via the classical pathway.
    Clas F, Loos M.
    Behring Inst Mitt; 1984 Nov 01; (76):59-74. PubMed ID: 6525148
    [Abstract] [Full Text] [Related]

  • 19. Complement activation is not required for IgG-mediated suppression of the antibody response.
    Heyman B, Wiersma E, Nose M.
    Eur J Immunol; 1988 Nov 01; 18(11):1739-43. PubMed ID: 3060362
    [Abstract] [Full Text] [Related]

  • 20. Antibody-independent interactions between Escherichia coli J5 and human complement components.
    Betz SJ, Isliker H.
    J Immunol; 1981 Nov 01; 127(5):1748-54. PubMed ID: 6795260
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.