These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


111 related items for PubMed ID: 6743303

  • 1. Enzymatic t-butyl hydroperoxide reduction on human erythrocyte membranes--NADPH and GSH dependent activities.
    Földes-Papp Z, Maretzki D.
    Biomed Biochim Acta; 1984; 43(3):271-9. PubMed ID: 6743303
    [Abstract] [Full Text] [Related]

  • 2. Role of protein -SH groups in redox homeostasis--the erythrocyte as a model system.
    Di Simplicio P, Cacace MG, Lusini L, Giannerini F, Giustarini D, Rossi R.
    Arch Biochem Biophys; 1998 Jul 15; 355(2):145-52. PubMed ID: 9675020
    [Abstract] [Full Text] [Related]

  • 3. Kinetics of tert-butyl hydroperoxide decomposition in erythrocyte suspension.
    Sitozhevsky AV, Havalkin IV, Ivanov VV, Kondakova IV.
    Membr Cell Biol; 1997 Jul 15; 11(4):487-95. PubMed ID: 9553936
    [Abstract] [Full Text] [Related]

  • 4. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide.
    Alía M, Ramos S, Mateos R, Granado-Serrano AB, Bravo L, Goya L.
    Toxicol Appl Pharmacol; 2006 Apr 15; 212(2):110-8. PubMed ID: 16126241
    [Abstract] [Full Text] [Related]

  • 5. [Indices of human erythrocytes resistance to oxidative stress].
    Verbolovich VP, Podgornyĭ IuK, Podgornaia LM.
    Vopr Med Khim; 1989 Apr 15; 35(5):35-40. PubMed ID: 2617933
    [Abstract] [Full Text] [Related]

  • 6. Kinetic studies on the removal of extracellular tert-butyl hydroperoxide by cultured fibroblasts.
    Makino N, Bannai S, Sugita Y.
    Biochim Biophys Acta; 1995 Apr 13; 1243(3):503-8. PubMed ID: 7727526
    [Abstract] [Full Text] [Related]

  • 7. Oxidative insult in sheep red blood cells induced by T-butyl hydroperoxide: the roles of glutathione and glutathione peroxidase.
    Zou CG, Agar NS, Jone GL.
    Free Radic Res; 2001 Jan 13; 34(1):45-56. PubMed ID: 11234995
    [Abstract] [Full Text] [Related]

  • 8. Sulphydryl groups and their relation to the antioxidant enzymes of chelonian red blood cells.
    Torsoni MA, Viana RI, Ogo SH.
    Biochem Mol Biol Int; 1998 Sep 13; 46(1):147-56. PubMed ID: 9784849
    [Abstract] [Full Text] [Related]

  • 9. Influence of tetrahydrocurcumin on erythrocyte membrane bound enzymes and antioxidant status in experimental type 2 diabetic rats.
    Murugan P, Pari L.
    J Ethnopharmacol; 2007 Sep 25; 113(3):479-86. PubMed ID: 17693046
    [Abstract] [Full Text] [Related]

  • 10. Selenium-dependent and non-selenium-dependent glutathione peroxidase in human tissues of New Zealand residents.
    Thomson CD.
    Biochem Int; 1985 Apr 25; 10(4):673-9. PubMed ID: 4026872
    [Abstract] [Full Text] [Related]

  • 11. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. The relative roles of haem- and glutathione-dependent decomposition of t-butyl hydroperoxide and membrane lipid hydroperoxides in lipid peroxidation and haemolysis.
    Trotta RJ, Sullivan SG, Stern A.
    Biochem J; 1983 Jun 15; 212(3):759-72. PubMed ID: 6882393
    [Abstract] [Full Text] [Related]

  • 12. Glutathione redox cycle-driven recovery of reduced glutathione after oxidation by tertiary-butyl hydroperoxide in preimplantation mouse embryos.
    Gardiner CS, Reed DJ.
    Arch Biochem Biophys; 1995 Aug 01; 321(1):6-12. PubMed ID: 7639536
    [Abstract] [Full Text] [Related]

  • 13. Tumour promoter tert-butyl-hydroperoxide induces peroxynitrite formation in human erythrocytes.
    Deliconstantinos G, Villiotou V, Stavrides JC.
    Anticancer Res; 1996 Aug 01; 16(5A):2969-79. PubMed ID: 8917415
    [Abstract] [Full Text] [Related]

  • 14. Lipid peroxidation and haemoglobin degradation in red blood cells exposed to t-butyl hydroperoxide. Effects of the hexose monophosphate shunt as mediated by glutathione and ascorbate.
    Trotta RJ, Sullivan SG, Stern A.
    Biochem J; 1982 May 15; 204(2):405-15. PubMed ID: 7115337
    [Abstract] [Full Text] [Related]

  • 15. Thymic peptides increase glutathione level and glutathione disulfide reductase activity in vascular endothelial cells.
    Li L, Clark K, Lau BH.
    Biotechnol Ther; 1994 May 15; 5(1-2):87-97. PubMed ID: 7703835
    [Abstract] [Full Text] [Related]

  • 16. Oxidative processes in red blood cells from normal and diabetic individuals.
    Bryszewska M, Zavodnik IB, Niekurzak A, Szosland K.
    Biochem Mol Biol Int; 1995 Oct 15; 37(2):345-54. PubMed ID: 8673018
    [Abstract] [Full Text] [Related]

  • 17. t-Butyl hydroperoxide alters fatty acid incorporation into erythrocyte membrane phospholipid.
    Dise CA, Goodman DB.
    Biochim Biophys Acta; 1986 Jul 10; 859(1):69-78. PubMed ID: 3718986
    [Abstract] [Full Text] [Related]

  • 18. Glutathione peroxidase isolated from plasma reduces phospholipid hydroperoxides.
    Yamamoto Y, Takahashi K.
    Arch Biochem Biophys; 1993 Sep 10; 305(2):541-5. PubMed ID: 8373192
    [Abstract] [Full Text] [Related]

  • 19. H2O2 injury in beta thalassemic erythrocytes: protective role of catalase and the prooxidant effects of GSH.
    Scott MD.
    Free Radic Biol Med; 2006 Apr 01; 40(7):1264-72. PubMed ID: 16545695
    [Abstract] [Full Text] [Related]

  • 20. Biochemical characterization of a trypanosome enzyme with glutathione-dependent peroxidase activity.
    Wilkinson SR, Meyer DJ, Kelly JM.
    Biochem J; 2000 Dec 15; 352 Pt 3(Pt 3):755-61. PubMed ID: 11104683
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.