These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 6748951

  • 1. Depolarization-induced increase in synaptosomal membrane calcium monitored by chlorotetracycline fluorescence.
    Hoss W, Formaniak M.
    Membr Biochem; 1984; 5(3):209-23. PubMed ID: 6748951
    [Abstract] [Full Text] [Related]

  • 2. Membrane potentials in pinched-off presynaptic nerve ternimals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials.
    Blaustein MP, Goldring JM.
    J Physiol; 1975 Jun; 247(3):589-615. PubMed ID: 49421
    [Abstract] [Full Text] [Related]

  • 3. [Changes in the physico-chemical properties of synaptosomal membranes induced by phospholipase A2].
    Erin AN, Tiurin VA, Brusovanik VI, Gorbunov NV, Selishcheva AA.
    Biokhimiia; 1985 Mar; 50(3):507-13. PubMed ID: 2986735
    [Abstract] [Full Text] [Related]

  • 4. Studies of mitochondrial calcium movements using chlorotetracycline.
    Luthra R, Olson MS.
    Biochim Biophys Acta; 1976 Sep 13; 440(3):744-58. PubMed ID: 822874
    [Abstract] [Full Text] [Related]

  • 5. Inhibition of fast- and slow-phase depolarization-dependent synaptosomal calcium uptake by ethanol.
    Leslie SW, Barr E, Chandler J, Farrar RP.
    J Pharmacol Exp Ther; 1983 Jun 13; 225(3):571-5. PubMed ID: 6864520
    [Abstract] [Full Text] [Related]

  • 6. Depolarization of synaptosomal membranes: a study of mechanism by which rhodamine 6G measures membrane potential.
    Joshi PG, Pant HC.
    Indian J Biochem Biophys; 1991 Apr 13; 28(2):140-5. PubMed ID: 1879870
    [Abstract] [Full Text] [Related]

  • 7. [Mechanisms of calcium transport in brain synaptosomes as affected by depolarization].
    Kravtsov GM, Pokudin NI, Gulak PV, Orlov SN.
    Biokhimiia; 1983 Aug 13; 48(8):1249-55. PubMed ID: 6138103
    [Abstract] [Full Text] [Related]

  • 8. [Effect of the Ca ionophore A-23187 on the plasmatic and mitochondrial potentials of the brain synaptosomes in rats: fluorescence measurements].
    Tiniakova LR, Antonikov IM, Glebov RN.
    Biull Eksp Biol Med; 1989 Jun 13; 107(6):678-80. PubMed ID: 2551414
    [Abstract] [Full Text] [Related]

  • 9. Modulation of levels of free calcium within synaptosomes by organochlorine insecticides.
    Komulainen H, Bondy SC.
    J Pharmacol Exp Ther; 1987 May 13; 241(2):575-81. PubMed ID: 2437290
    [Abstract] [Full Text] [Related]

  • 10. Gangliosides and synaptosomal calcium homeostasis.
    Domańska-Janik K, Noremberg K, Lazarewicz J.
    Int J Tissue React; 1986 May 13; 8(5):373-82. PubMed ID: 3781769
    [Abstract] [Full Text] [Related]

  • 11. Intrasynaptosomal compartmentation of calcium during depolarization-induced calcium uptake across the plasma membrane.
    Akerman KE, Nicholls DG.
    Biochim Biophys Acta; 1981 Jul 06; 645(1):41-8. PubMed ID: 7260086
    [Abstract] [Full Text] [Related]

  • 12. Differential effects of age on the pathways of calcium influx into nerve terminals.
    Martínez A, Vitórica J, Bogónez E, Satrústegui J.
    Brain Res; 1987 Dec 01; 435(1-2):249-57. PubMed ID: 3427455
    [Abstract] [Full Text] [Related]

  • 13. Cellular mechanisms underlying the increase in cytosolic free calcium concentration induced by methylmercury in cerebrocortical synaptosomes from guinea pig.
    Kauppinen RA, Komulainen H, Taipale H.
    J Pharmacol Exp Ther; 1989 Mar 01; 248(3):1248-54. PubMed ID: 2703974
    [Abstract] [Full Text] [Related]

  • 14. Changes of calcium homeostasis in nerve endings during aging.
    Satrustegui J, Martinez-Serrano A, Bogonez E, Vitorica J, Blanco P, Nuñez E.
    Z Gerontol; 1991 Mar 01; 24(2):88-90. PubMed ID: 1652179
    [Abstract] [Full Text] [Related]

  • 15. Rate of Na+/Ca2+ exchange across the plasma membrane of synaptosomes measured using the fluorescence of chlorotetracycline. Implications to calcium homeostasis in synaptic terminals.
    García-Martín E, Gutiérrez-Merino C.
    Biochim Biophys Acta; 1996 Apr 26; 1280(2):257-64. PubMed ID: 8639702
    [Abstract] [Full Text] [Related]

  • 16. Block of 45Ca uptake into synaptosomes by methylmercury: Ca++- and Na+-dependence.
    Shafer TJ, Atchison WD.
    J Pharmacol Exp Ther; 1989 Feb 26; 248(2):696-702. PubMed ID: 2918475
    [Abstract] [Full Text] [Related]

  • 17. Studies on beta-endorphin and membrane-bound calcium interaction using chlorotetracycline (CTC) as a fluorescence probe.
    Chakrabarti AK, Chatterjee TK, Ghosh JJ.
    Peptides; 1983 Feb 26; 4(3):273-6. PubMed ID: 6314290
    [Abstract] [Full Text] [Related]

  • 18. Effects of antibiotics on uptake of calcium into isolated nerve terminals.
    Atchison WD, Adgate L, Beaman CM.
    J Pharmacol Exp Ther; 1988 May 26; 245(2):394-401. PubMed ID: 3367298
    [Abstract] [Full Text] [Related]

  • 19. Fluorescence changes of rhodamine 6G associated with changes in membrane potential in synaptosomes.
    Aiuchi T, Daimatsu T, Nakaya K, Nakamura Y.
    Biochim Biophys Acta; 1982 Mar 08; 685(3):289-96. PubMed ID: 7066314
    [Abstract] [Full Text] [Related]

  • 20. Ionophore A23187, verapamil, protonophores, and veratridine influence the release of gamma-aminobutyric acid from synaptosomes by modulation of the plasma membrane potential rather than the cytosolic calcium.
    Sihra TS, Scott IG, Nicholls DG.
    J Neurochem; 1984 Dec 08; 43(6):1624-30. PubMed ID: 6436439
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.