These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


381 related items for PubMed ID: 6749912

  • 1. Raphespinal projections in the North American opossum: evidence for connectional heterogeneity.
    Martin GF, Cabana T, Ditirro FJ, Ho RH, Humbertson AO.
    J Comp Neurol; 1982 Jun 10; 208(1):67-84. PubMed ID: 6749912
    [Abstract] [Full Text] [Related]

  • 2. Spinal projections from the mesencephalic and pontine reticular formation in the North American Opossum: a study using axonal transport techniques.
    Martin GF, Humbertson AO, Laxson LC, Panneton WM, Tschismadia I.
    J Comp Neurol; 1979 Sep 15; 187(2):373-99. PubMed ID: 489785
    [Abstract] [Full Text] [Related]

  • 3. Spinal projections from the medullary reticular formation of the North American opossum: heterogeneity.
    Martin GF, Cabana T, Humbertson AO, Laxson LC, Panneton WM.
    J Comp Neurol; 1981 Mar 10; 196(4):663-82. PubMed ID: 6110678
    [Abstract] [Full Text] [Related]

  • 4. The brainstem origin of monoaminergic projections to the spinal cord of the North American opossum: a study using fluorescent tracers and fluorescence histochemistry.
    Martin GF, Cabana T, Humbertson AO.
    Brain Res Bull; 1982 Mar 10; 9(1-6):217-25. PubMed ID: 6129037
    [Abstract] [Full Text] [Related]

  • 5. Origins and terminations of bulbospinal axons that contain serotonin and either enkephalin or substance-P in the North American opossum.
    Reddy VK, Cassini P, Ho RH, Martin GF.
    J Comp Neurol; 1990 Apr 01; 294(1):96-108. PubMed ID: 1691216
    [Abstract] [Full Text] [Related]

  • 6. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. I. Medullary nuclei.
    Newman DB.
    J Hirnforsch; 1985 Apr 01; 26(2):187-226. PubMed ID: 2410489
    [Abstract] [Full Text] [Related]

  • 7. Differential projections of cat medullary raphe neurons demonstrated by retrograde labelling following spinal cord lesions.
    Martin RF, Jordan LM, Willis WD.
    J Comp Neurol; 1978 Nov 01; 182(1):77-88. PubMed ID: 701490
    [Abstract] [Full Text] [Related]

  • 8. The origin of reticulospinal fibers in the rat: a HRP study.
    Satoh K.
    J Hirnforsch; 1979 Nov 01; 20(3):313-22. PubMed ID: 536593
    [Abstract] [Full Text] [Related]

  • 9. Evidence for collateral innervation of the cervical and lumbar enlargements of the spinal cord by single reticular and raphe neurons. Studies using fluorescent markers in double-labeling experiments on the North American opossum.
    Martin GF, Cabana T, Humbertson AO.
    Neurosci Lett; 1981 Jun 12; 24(1):1-6. PubMed ID: 6167916
    [Abstract] [Full Text] [Related]

  • 10. The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation.
    Basbaum AI, Fields HL.
    J Comp Neurol; 1979 Oct 01; 187(3):513-31. PubMed ID: 489790
    [Abstract] [Full Text] [Related]

  • 11. Termination areas of corticobulbar and corticospinal fibres in the rat.
    Antal M.
    J Hirnforsch; 1984 Oct 01; 25(6):647-59. PubMed ID: 6526991
    [Abstract] [Full Text] [Related]

  • 12. Immunohistochemistry and spinal projections of the reticular formation in the northern leopard frog, Rana pipiens.
    Adli DS, Stuesse SL, Cruce WL.
    J Comp Neurol; 1999 Feb 15; 404(3):387-407. PubMed ID: 9952355
    [Abstract] [Full Text] [Related]

  • 13. The ascending input to the midbrain periaqueductal gray of the primate.
    Mantyh PW.
    J Comp Neurol; 1982 Oct 10; 211(1):50-64. PubMed ID: 7174883
    [Abstract] [Full Text] [Related]

  • 14. The sources of supraspinal afferents to the spinal cord in a variety of limbed reptiles. I. Reticulospinal systems.
    Newman DB, Cruce WL, Bruce LL.
    J Comp Neurol; 1983 Mar 20; 215(1):17-32. PubMed ID: 6853763
    [Abstract] [Full Text] [Related]

  • 15. Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase.
    Langer T, Fuchs AF, Scudder CA, Chubb MC.
    J Comp Neurol; 1985 May 01; 235(1):1-25. PubMed ID: 3989000
    [Abstract] [Full Text] [Related]

  • 16. Brainstem afferents to the omnipause region in the cat: a horseradish peroxidase study.
    Langer TP, Kaneko CR.
    J Comp Neurol; 1984 Dec 10; 230(3):444-58. PubMed ID: 6520245
    [Abstract] [Full Text] [Related]

  • 17. Projections from the brain stem reticular formation to laminae I and II of the spinal cord. Studies using light and electron microscopic techniques in the North American opossum.
    Goode GE, Humbertson AO, Martin GF.
    Brain Res; 1980 May 12; 189(2):327-42. PubMed ID: 7370781
    [Abstract] [Full Text] [Related]

  • 18. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. II. Pontine and mesencephalic nuclei.
    Newman DB.
    J Hirnforsch; 1985 May 12; 26(4):385-418. PubMed ID: 4067279
    [Abstract] [Full Text] [Related]

  • 19. Projections of the dorsal raphe nucleus to the brainstem: PHA-L analysis in the rat.
    Vertes RP, Kocsis B.
    J Comp Neurol; 1994 Feb 01; 340(1):11-26. PubMed ID: 8176000
    [Abstract] [Full Text] [Related]

  • 20. Neurons at the origin of the medial component of the bulbopontine spinoreticular tract in the rat: an anatomical study using horseradish peroxidase retrograde transport.
    Chaouch A, Menetrey D, Binder D, Besson JM.
    J Comp Neurol; 1983 Mar 01; 214(3):309-20. PubMed ID: 6853760
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.