These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 6774097
1. Microprobe study of toad urinary bladder in absence of serosal K+. Civan MM, Hall TA, Gupta BL. J Membr Biol; 1980 Aug 07; 55(3):187-202. PubMed ID: 6774097 [Abstract] [Full Text] [Related]
2. Effects of potassium-free media and ouabain on epithelial cell composition in toad urinary bladder studied with X-ray microanalysis. Bowler JM, Purves RD, Macknight AD. J Membr Biol; 1991 Aug 07; 123(2):115-32. PubMed ID: 1659639 [Abstract] [Full Text] [Related]
3. Electron microprobe analysis of the different epithelial cells of toad urinary bladder. Electrolyte concentrations at different functional states of transepithelial sodium transport. Rick R, Dörge A, Macknight AD, Leaf A, Thurau K. J Membr Biol; 1978 Mar 10; 39(2-3):257-71. PubMed ID: 417181 [Abstract] [Full Text] [Related]
4. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. II. Effects of different medium potassium concentrations on epithelial cell composition. Robinson BA, Macknight AD. J Membr Biol; 1976 Mar 18; 26(2-3):239-68. PubMed ID: 817030 [Abstract] [Full Text] [Related]
5. Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium: role of sodium-calcium exchange in the basolateral membrane. Chase HS, Al-Awqati Q. J Gen Physiol; 1981 Jun 18; 77(6):693-712. PubMed ID: 6790663 [Abstract] [Full Text] [Related]
6. Effects of intracellular sodium and potassium iontophoresis on membrane potentials and resistances in toad urinary bladder. Narvarte J, Finn AL. J Membr Biol; 1985 Jun 18; 84(1):1-7. PubMed ID: 3923199 [Abstract] [Full Text] [Related]
7. Effects of voltage clamping on epithelial cell composition in toad urinary bladder studied with x-ray microanalysis. Bowler JM, McLaughlin CW, Butt AG, Purves RD, Macknight AD. J Membr Biol; 1995 May 18; 145(2):175-85. PubMed ID: 7563019 [Abstract] [Full Text] [Related]
8. Intracellular solute gradients during osmotic water flow: an electron-microprobe analysis. Rick R, DiBona DR. J Membr Biol; 1987 May 18; 96(1):85-94. PubMed ID: 3108512 [Abstract] [Full Text] [Related]
9. Metabolic evidence that serosal sodium does not recycle through the active transepithelial transport pathway of toad bladder. Canessa M, Labarca P, Leaf A. J Membr Biol; 1976 Dec 25; 30(1):65-77. PubMed ID: 827615 [Abstract] [Full Text] [Related]
10. Some effects of ouabain on cellular ions and water in epithelial cells of toad urinary bladder. Macknight AD, Civan MM, Leaf A. J Membr Biol; 1975 Dec 25; 20(3-4):387-401. PubMed ID: 806690 [Abstract] [Full Text] [Related]
11. Cellular lithium and transepithelial transport across toad urinary bladder. Hughes PM, Macknight AD. J Membr Biol; 1982 Dec 25; 70(1):69-88. PubMed ID: 6821210 [Abstract] [Full Text] [Related]
19. Water flow in the toad urinary bladder in response to vasopressin: role of potassium. Carvounis CP, Carvounis G, Bernstein C, Oros ME. Biol Cell; 1989 Dec 25; 66(1-2):43-51. PubMed ID: 2553176 [Abstract] [Full Text] [Related]
20. Relationship of transient electrical properties to active sodium transport by toad urinary bladder. Weinstein FC, Rosowski JJ, Peterson K, Delalic Z, Civan MM. J Membr Biol; 1980 Jan 31; 52(1):25-35. PubMed ID: 6767036 [Abstract] [Full Text] [Related] Page: [Next] [New Search]