These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 6777486

  • 1. Magnesium buffering in intact human red blood cells measured using the ionophore A23187.
    Flatman PW, Lew VL.
    J Physiol; 1980 Aug; 305():13-30. PubMed ID: 6777486
    [Abstract] [Full Text] [Related]

  • 2. The effect of buffer composition and deoxygenation on the concentration of ionized magnesium inside human red blood cells.
    Flatman PW.
    J Physiol; 1980 Mar; 300():19-30. PubMed ID: 6770081
    [Abstract] [Full Text] [Related]

  • 3. Cytoplasmic calcium buffers in intact human red cells.
    Tiffert T, Lew VL.
    J Physiol; 1997 Apr 01; 500 ( Pt 1)(Pt 1):139-54. PubMed ID: 9097939
    [Abstract] [Full Text] [Related]

  • 4. Effects of divalent cation ionophore A23187 on potassium permeability of rat erythrocytes.
    Reed PW.
    J Biol Chem; 1976 Jun 10; 251(11):3489-94. PubMed ID: 6455
    [Abstract] [Full Text] [Related]

  • 5. Effect of intracellular magnesium on calcium extrusion by the plasma membrane calcium pump of intact human red cells.
    Raftos JE, Lew VL.
    J Physiol; 1995 Nov 15; 489 ( Pt 1)(Pt 1):63-72. PubMed ID: 8583416
    [Abstract] [Full Text] [Related]

  • 6. The effects of magnesium on potassium transport in ferret red cells.
    Flatman PW.
    J Physiol; 1988 Mar 15; 397():471-87. PubMed ID: 3137332
    [Abstract] [Full Text] [Related]

  • 7. The magnesium dependence of sodium-pump-mediated sodium-potassium and sodium-sodium exchange in intact human red cells.
    Flatman PW, Lew VL.
    J Physiol; 1981 Jun 15; 315():421-46. PubMed ID: 6796677
    [Abstract] [Full Text] [Related]

  • 8. Use of ionophore A23187 to measure and to control free and bound cytoplasmic Mg in intact red cells.
    Flatman P, Lew VL.
    Nature; 1977 May 26; 267(5609):360-2. PubMed ID: 325421
    [No Abstract] [Full Text] [Related]

  • 9. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK, Siddle K.
    Biochem J; 1976 Aug 15; 158(2):211-21. PubMed ID: 186033
    [Abstract] [Full Text] [Related]

  • 10. Effect of ionophore A23187 upon membrane function and ion movement in human and toad erythrocytes.
    Lake W, Rasmussen H, Goodman DB.
    J Membr Biol; 1977 Apr 07; 32(1-2):93-113. PubMed ID: 404430
    [Abstract] [Full Text] [Related]

  • 11. Effects of deoxygenation on active and passive Ca2+ transport and cytoplasmic Ca2+ buffering in normal human red cells.
    Tiffert T, Etzion Z, Bookchin RM, Lew VL.
    J Physiol; 1993 May 07; 464():529-44. PubMed ID: 8229816
    [Abstract] [Full Text] [Related]

  • 12. Cobalt uptake and binding in human red blood cells.
    Simonsen LO, Brown AM, Harbak H, Kristensen BI, Bennekou P.
    Blood Cells Mol Dis; 2011 Apr 15; 46(4):266-76. PubMed ID: 21420882
    [Abstract] [Full Text] [Related]

  • 13. Uniform ionophore A23187 distribution and cytoplasmic calcium buffering in intact human red cells.
    Simonsen LO, Gomme J, Lew VL.
    Biochim Biophys Acta; 1982 Nov 22; 692(3):431-40. PubMed ID: 6293570
    [Abstract] [Full Text] [Related]

  • 14. Effect of changes in the rate of ionophore A23187-induced calcium influx on the pump-leak steady-state distribution of calcium in inosine-fed human red cells.
    Tiffert T, Lew VL.
    Biochim Biophys Acta; 1986 Aug 21; 860(2):429-33. PubMed ID: 2427117
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. A23187 and red cells: changes in deformability, K+, Mg-2+, Ca-2+ and ATP.
    Kirkpatrick FH, Hillman DG, La Celle PL.
    Experientia; 1975 Jun 15; 31(6):653-4. PubMed ID: 1095389
    [No Abstract] [Full Text] [Related]

  • 17. Apparent Ca2+ dissociation constant of Ca2+ chelators incorporated non-disruptively into intact human red cells.
    Tiffert T, Lew VL.
    J Physiol; 1997 Dec 01; 505 ( Pt 2)(Pt 2):403-10. PubMed ID: 9423182
    [Abstract] [Full Text] [Related]

  • 18. Intracellular free zinc and zinc buffering in human red blood cells.
    Simons TJ.
    J Membr Biol; 1991 Jul 01; 123(1):63-71. PubMed ID: 1774775
    [Abstract] [Full Text] [Related]

  • 19. Conditions limiting the use of ionophore A23187 as a probe of divalent cation involvement in biological reactions. Evidence from the slow fluorescence quenching of type A spinach chloroplasts.
    Sokolove PM.
    Biochim Biophys Acta; 1979 Jan 11; 545(1):155-64. PubMed ID: 31934
    [Abstract] [Full Text] [Related]

  • 20. Refinement and evaluation of a model of Mg2+ buffering in human red cells.
    Raftos JE, Lew VL, Flatman PW.
    Eur J Biochem; 1999 Aug 11; 263(3):635-45. PubMed ID: 10469126
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.