These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


98 related items for PubMed ID: 6784766

  • 1. Active Ca2+ transport by membrane vesicles from pigeon erythrocytes. Stimulation by amino acids, ATP, GTP, Pi and some other cell constituents.
    Lee JW, Vidaver GA.
    Biochim Biophys Acta; 1981 May 06; 643(2):421-34. PubMed ID: 6784766
    [Abstract] [Full Text] [Related]

  • 2. Calcium transport by pigeon erythrocyte membrane vesicles.
    Ting A, Lee JW, Vidaver GA.
    Biochim Biophys Acta; 1979 Aug 07; 555(2):239-48. PubMed ID: 476104
    [Abstract] [Full Text] [Related]

  • 3. Active Ca2+ transport by vesicles reconstituted from Triton X-100-solubilized pigeon erythrocyte membrane.
    Yeung WK, Weisman G, Vidaver GA.
    Biochim Biophys Acta; 1979 Aug 07; 555(2):249-58. PubMed ID: 476105
    [Abstract] [Full Text] [Related]

  • 4. Studies of the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. II. Stimulation of the Ca2+ pump by phosphate.
    Waisman DM, Gimble JM, Goodman DB, Rasmussen H.
    J Biol Chem; 1981 Jan 10; 256(1):415-9. PubMed ID: 6778863
    [No Abstract] [Full Text] [Related]

  • 5. Inhibition by calcium ions of adenosine cyclic monophosphate formation in sealed pigeon erythrocyte 'ghosts'. A study using the photoprotein obelin.
    Campbell AK, Dormer RL.
    Biochem J; 1978 Oct 15; 176(1):53-66. PubMed ID: 215135
    [Abstract] [Full Text] [Related]

  • 6. Lysolecithin-induced Ca2+ uptake by pigeon red cells.
    Lee JW, Ting A, Vidaver GA.
    Life Sci; 1986 Mar 17; 38(11):1013-9. PubMed ID: 3951321
    [Abstract] [Full Text] [Related]

  • 7. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK, Siddle K.
    Biochem J; 1976 Aug 15; 158(2):211-21. PubMed ID: 186033
    [Abstract] [Full Text] [Related]

  • 8. Cholinergic agonists stimulate calcium uptake and cGMP formation in human erythrocytes.
    Tang LC, Schoomaker E, Wiesmann WP.
    Biochim Biophys Acta; 1984 May 16; 772(2):235-8. PubMed ID: 6326824
    [Abstract] [Full Text] [Related]

  • 9. Studies on the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. V. Chlortetracycline fluorescence.
    Gimble JM, Gustin M, Goodman DB, Rasmussen H.
    Biochim Biophys Acta; 1982 Mar 08; 685(3):253-9. PubMed ID: 6802179
    [Abstract] [Full Text] [Related]

  • 10. ATP-dependent phosphate transport in sarcoplasmic reticulum and reconstituted proteoliposomes.
    Carley WW, Racker E.
    Biochim Biophys Acta; 1982 May 19; 680(2):187-93. PubMed ID: 6212081
    [Abstract] [Full Text] [Related]

  • 11. Phosphoinositide hydrolysis by guanosine 5'-[gamma-thio]triphosphate-activated phospholipase C of turkey erythrocyte membranes.
    Harden TK, Hawkins PT, Stephens L, Boyer JL, Downes CP.
    Biochem J; 1988 Jun 01; 252(2):583-93. PubMed ID: 2843174
    [Abstract] [Full Text] [Related]

  • 12. Studies of the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. III. Stimulation of the Ca2+ pump by anions.
    Waisman DM, Gimble JM, Goodman DB, Rasmussen H.
    J Biol Chem; 1981 Jan 10; 256(1):420-4. PubMed ID: 6108956
    [No Abstract] [Full Text] [Related]

  • 13. The formation of vesicles retaining sodium-dependent transport systems for amino acids from protein-depleted membranes of pigeon erythrocytes.
    Watts C, Wheeler KP.
    Biochim Biophys Acta; 1980 Nov 04; 602(2):460-6. PubMed ID: 7426657
    [Abstract] [Full Text] [Related]

  • 14. Net ATP synthesis by running the red cell calcium pump backwards.
    Wüthrich A, Schatzmann HJ, Romero P.
    Experientia; 1979 Dec 15; 35(12):1589-90. PubMed ID: 391586
    [Abstract] [Full Text] [Related]

  • 15. On the substrate specificity of the red cell calcium pump.
    Enyedi A, Sarkadi B, Gárdos G.
    Biochim Biophys Acta; 1982 Apr 23; 687(1):109-12. PubMed ID: 6978736
    [Abstract] [Full Text] [Related]

  • 16. Association of (Ca + Mg)-ATPase activity with ATP-dependent Ca uptake in vesicles prepared from human erythrocytes.
    Quist EE, Roufogalis BD.
    J Supramol Struct; 1977 Apr 23; 6(3):375-81. PubMed ID: 145517
    [Abstract] [Full Text] [Related]

  • 17. Plasma membrane Ca2+ transport: stimulation by soluble proteins.
    Hinds TR, Larsen FL, Vincenzi FF.
    Biochem Biophys Res Commun; 1978 Mar 30; 81(2):455-61. PubMed ID: 149540
    [No Abstract] [Full Text] [Related]

  • 18. Characteristics and regulation of active calcium transport in inside-out red cell membrane vesicles.
    Sarkadi B, Szász I, Gárdos G.
    Biochim Biophys Acta; 1980 May 23; 598(2):326-38. PubMed ID: 6769484
    [Abstract] [Full Text] [Related]

  • 19. Stimulation by calcium of glucose uptake and lactate production in pigeon erythrocytes.
    Lucas M.
    Biomed Biochim Acta; 1987 May 23; 46(2-3):S253-7. PubMed ID: 3109406
    [Abstract] [Full Text] [Related]

  • 20. Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells.
    Sarkadi B, Szász I, Gerlóczy A, Gárdos G.
    Biochim Biophys Acta; 1977 Jan 04; 464(1):93-107. PubMed ID: 137747
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.