These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ventilatory changes during exercise and arterial PCO2 oscillations in chronic airway obstruction patients. Prior JG, Powlson M, Cochrane GM, Wolff CB. J Appl Physiol (1985); 1985 Jun; 58(6):1942-8. PubMed ID: 3924885 [Abstract] [Full Text] [Related]
3. [Development of respiratory function in patients with chronic obstructive respiratory disease]. Höffe G, Ulmer WT. Dtsch Med Wochenschr; 1985 Mar 15; 110(11):415-9. PubMed ID: 3920038 [Abstract] [Full Text] [Related]
5. Relationships of carbon dioxide retention to ventilatory impairment and hypoxemia in chronic obstructive lung disease. Teculescu DB, Racoveanu C, Manicatide MA. Respiration; 1979 Sep 15; 38(2):81-7. PubMed ID: 515533 [Abstract] [Full Text] [Related]
6. Premorbid ventilatory response to hypercapnia is not related to resting arterial carbon dioxide tension in hamsters with elastase-induced emphysema. Javaheri S, Lucey EC, Snider GL. Am Rev Respir Dis; 1985 Nov 15; 132(5):1055-9. PubMed ID: 3933390 [Abstract] [Full Text] [Related]
7. Lung function and exercise gas exchange in chronic heart failure. Wasserman K, Zhang YY, Gitt A, Belardinelli R, Koike A, Lubarsky L, Agostoni PG. Circulation; 1997 Oct 07; 96(7):2221-7. PubMed ID: 9337193 [Abstract] [Full Text] [Related]
8. The objective evaluation of obstructive pulmonary diseases with spirometry. Ozkaya S, Dirican A, Tuna T. Int J Chron Obstruct Pulmon Dis; 2016 Oct 07; 11():2009-15. PubMed ID: 27616884 [Abstract] [Full Text] [Related]
9. Measurement of effective alveolar carbon dioxide tension during spontaneous breathing in normal subjects and patients with chronic airways obstruction. Jordanoglou J, Koulouris N, Kyroussis D, Rapakoulias P, Vassalos P, Madianos J. Thorax; 1995 Mar 07; 50(3):240-4. PubMed ID: 7660335 [Abstract] [Full Text] [Related]
10. Familial factors affecting arterial blood gas values and respiratory chemosensitivity in chronic obstructive pulmonary disease. Kawakami Y, Irie T, Shida A, Yoshikawa T. Am Rev Respir Dis; 1982 Apr 07; 125(4):420-5. PubMed ID: 6803634 [Abstract] [Full Text] [Related]
11. Derivation of CO2 output from oscillations in arterial pH. Cross BA, Stidwill RP, Leaver KD, Semple SJ. J Appl Physiol (1985); 1987 Mar 07; 62(3):880-91. PubMed ID: 3106315 [Abstract] [Full Text] [Related]
13. Changes in potassium content of erythrocytes during exercise in man. Kawakami Y, Kishi F, Uchiyama K, Irie T, Murao M. Eur J Clin Invest; 1975 Sep 12; 5(5):391-5. PubMed ID: 241650 [Abstract] [Full Text] [Related]
14. Effect of acute changes in arterial pCO2 and pH on pulmonary mechanics in man. Pande JN, Sridharan SK, Guleria JS. Indian J Med Res; 1974 Apr 12; 62(4):584-97. PubMed ID: 4435867 [No Abstract] [Full Text] [Related]
15. Does phase 2 of the expiratory PCO2 versus volume curve have diagnostic value in emphysema patients? Kars AH, Goorden G, Stijnen T, Bogaard JM, Verbraak AF, Hilvering C. Eur Respir J; 1995 Jan 12; 8(1):86-92. PubMed ID: 7744199 [Abstract] [Full Text] [Related]
16. Respiratory oscillations in arterial carbon dioxide tension as a control signal in exercise. Band DM, Wolff CB, Ward J, Cochrane GM, Prior J. Nature; 1980 Jan 03; 283(5742):84-5. PubMed ID: 7350529 [Abstract] [Full Text] [Related]
19. The effect of voluntary hyperventilation on arterial blood gases and gas exchange in patients with chronic obstructive lung disease. Müller J, Radwan L. Scand J Respir Dis; 1976 Jan 03; 57(3):129-38. PubMed ID: 981999 [Abstract] [Full Text] [Related]
20. Clinical characteristics of chronic bronchitic, emphysematous and ACOS phenotypes in COPD patients with frequent exacerbations. Cheng Y, Tu X, Pan L, Lu S, Xing M, Li L, Chen X. Int J Chron Obstruct Pulmon Dis; 2017 Jan 03; 12():2069-2074. PubMed ID: 28790809 [Abstract] [Full Text] [Related] Page: [Next] [New Search]