These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


197 related items for PubMed ID: 6799488

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
    Cords BR, McKay LL.
    J Bacteriol; 1974 Sep; 119(3):830-9. PubMed ID: 4368487
    [Abstract] [Full Text] [Related]

  • 3. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei.
    Chassy BM, Thompson J.
    J Bacteriol; 1983 Jun; 154(3):1195-203. PubMed ID: 6406426
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport.
    Calmes R.
    Infect Immun; 1978 Mar; 19(3):934-42. PubMed ID: 246429
    [Abstract] [Full Text] [Related]

  • 6. Properties of a Streptococcus lactis strain that ferments lactose slowly.
    Crow VL, Thomas TD.
    J Bacteriol; 1984 Jan; 157(1):28-34. PubMed ID: 6418719
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis.
    LeBlanc DJ, Crow VL, Lee LN, Garon CF.
    J Bacteriol; 1979 Feb; 137(2):878-84. PubMed ID: 106044
    [Abstract] [Full Text] [Related]

  • 9. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis.
    Thompson J, Turner KW, Thomas TD.
    J Bacteriol; 1978 Mar; 133(3):1163-74. PubMed ID: 417061
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Regulation of methyl-beta-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms.
    Thompson J, Saier MH.
    J Bacteriol; 1981 Jun; 146(3):885-94. PubMed ID: 6787017
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression.
    Zeng L, Das S, Burne RA.
    J Bacteriol; 2010 May; 192(9):2434-44. PubMed ID: 20190045
    [Abstract] [Full Text] [Related]

  • 16. Galactose transport systems in Streptococcus lactis.
    Thompson J.
    J Bacteriol; 1980 Nov; 144(2):683-91. PubMed ID: 6776094
    [Abstract] [Full Text] [Related]

  • 17. Lactose hydrolysing enzymes in Streptococcus lactis and Streptococcus cremoris and also in some other species of streptococci.
    Farrow JA.
    J Appl Bacteriol; 1980 Dec; 49(3):493-503. PubMed ID: 6783605
    [No Abstract] [Full Text] [Related]

  • 18. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities.
    Thompson J, Chassy BM, Egan W.
    J Bacteriol; 1985 Apr; 162(1):217-23. PubMed ID: 3920203
    [Abstract] [Full Text] [Related]

  • 19. Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis.
    de Vos WM, Boerrigter I, van Rooyen RJ, Reiche B, Hengstenberg W.
    J Biol Chem; 1990 Dec 25; 265(36):22554-60. PubMed ID: 2125052
    [Abstract] [Full Text] [Related]

  • 20. Pathways for lactose/galactose catabolism by Streptococcus salivarius.
    Chen YY, Betzenhauser MJ, Snyder JA, Burne RA.
    FEMS Microbiol Lett; 2002 Mar 19; 209(1):75-9. PubMed ID: 12007657
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.