These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


190 related items for PubMed ID: 6801014

  • 1. Characterization and genetic mapping of fructose phosphotransferase mutations in Pseudomonas aeruginosa.
    Roehl RA, Phibbs PV.
    J Bacteriol; 1982 Mar; 149(3):897-905. PubMed ID: 6801014
    [Abstract] [Full Text] [Related]

  • 2. Characterization and genetic mapping of phosphoglucoisomerase mutations in mannitol-negative mutants of Pseudomonas aeruginosa.
    Calligeros JE, Matsumoto H, Phibbs PV, Gates JE.
    Curr Microbiol; 1996 Dec; 33(6):347-51. PubMed ID: 8900099
    [Abstract] [Full Text] [Related]

  • 3. Fractionation and characterization of the phosphoenolpyruvate: fructose 1-phosphotransferase system from Pseudomonas aeruginosa.
    Durham DR, Phibbs PV.
    J Bacteriol; 1982 Feb; 149(2):534-41. PubMed ID: 6799490
    [Abstract] [Full Text] [Related]

  • 4. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium.
    Feldheim DA, Chin AM, Nierva CT, Feucht BU, Cao YW, Xu YF, Sutrina SL, Saier MH.
    J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752
    [Abstract] [Full Text] [Related]

  • 5. Mannitol and fructose catabolic pathways of Pseudomonas aeruginosa carbohydrate-negative mutants and pleiotropic effects of certain enzyme deficiencies.
    Phibbs PV, McCowen SM, Feary TW, Blevins WT.
    J Bacteriol; 1978 Feb; 133(2):717-28. PubMed ID: 146701
    [Abstract] [Full Text] [Related]

  • 6. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD, Roseman S, Saier MH.
    J Biol Chem; 1976 Nov 10; 251(21):6584-97. PubMed ID: 789368
    [Abstract] [Full Text] [Related]

  • 7. Novel phosphotransferase systems revealed by bacterial genome analysis: the complete repertoire of pts genes in Pseudomonas aeruginosa.
    Reizer J, Reizer A, Lagrou MJ, Folger KR, Stover CK, Saier MH.
    J Mol Microbiol Biotechnol; 1999 Nov 10; 1(2):289-93. PubMed ID: 10943558
    [Abstract] [Full Text] [Related]

  • 8. Clustering of mutations affecting central pathway enzymes of carbohydrate catabolism in Pseudomonas aeruginosa.
    Roehl RA, Feary TW, Phibbs PV.
    J Bacteriol; 1983 Dec 10; 156(3):1123-9. PubMed ID: 6417110
    [Abstract] [Full Text] [Related]

  • 9. Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism.
    Chavarría M, Kleijn RJ, Sauer U, Pflüger-Grau K, de Lorenzo V.
    mBio; 2012 Dec 10; 3(2):. PubMed ID: 22434849
    [Abstract] [Full Text] [Related]

  • 10. Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli.
    Kornberg HL, Lambourne LT, Sproul AA.
    Proc Natl Acad Sci U S A; 2000 Feb 15; 97(4):1808-12. PubMed ID: 10677538
    [Abstract] [Full Text] [Related]

  • 11. Regulation of competence development and sugar utilization in Haemophilus influenzae Rd by a phosphoenolpyruvate:fructose phosphotransferase system.
    Macfadyen LP, Dorocicz IR, Reizer J, Saier MH, Redfield RJ.
    Mol Microbiol; 1996 Sep 15; 21(5):941-52. PubMed ID: 8885265
    [Abstract] [Full Text] [Related]

  • 12. Isolation and properties of pyruvate dehydrogenase complex mutants of Pseudomonas aeruginosa PAO.
    Jeyaseelan K, Guest JR.
    J Gen Microbiol; 1980 Oct 15; 120(2):385-92. PubMed ID: 6785385
    [Abstract] [Full Text] [Related]

  • 13. Transport of mannose by an inducible phosphoenolpyruvate:fructose phosphotransferase system in Streptococcus salivarius.
    Pelletier G, Frenette M, Vadeboncoeur C.
    Microbiology (Reading); 1994 Sep 15; 140 ( Pt 9)():2433-8. PubMed ID: 7952194
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Protein:Protein interactions in the cytoplasmic membrane apparently influencing sugar transport and phosphorylation activities of the e. coli phosphotransferase system.
    Aboulwafa M, Zhang Z, Saier MH.
    PLoS One; 2019 Sep 15; 14(11):e0219332. PubMed ID: 31751341
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Identification of PTS(Fru) as the major fructose uptake system of Clostridium acetobutylicum.
    Voigt C, Bahl H, Fischer RJ.
    Appl Microbiol Biotechnol; 2014 Aug 15; 98(16):7161-72. PubMed ID: 24841119
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Routes for fructose utilization by Escherichia coli.
    Kornberg HL.
    J Mol Microbiol Biotechnol; 2001 Jul 15; 3(3):355-9. PubMed ID: 11361065
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.