These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 6806998

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. The effect of soil type and plant age on the population size of rhizospheric methanotrophs and their activities in tropical rice soils.
    Vishwakarma P, Dubey SK.
    J Basic Microbiol; 2007 Aug; 47(4):351-7. PubMed ID: 17647202
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. [Mechanism of methane oxidation by intact cells of obligate methylotrophs].
    Malashenko IuR, Romanovskaia VA, Sokolov IG, Kryshtab TP.
    Mikrobiologiia; 1976 Aug; 45(6):1105-7. PubMed ID: 827668
    [Abstract] [Full Text] [Related]

  • 26. Nitrogen fixation by methane-utilizing bacteria.
    Bont JA.
    Antonie Van Leeuwenhoek; 1976 Aug; 42(3):245-53. PubMed ID: 825037
    [No Abstract] [Full Text] [Related]

  • 27. Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids.
    Shrestha M, Abraham WR, Shrestha PM, Noll M, Conrad R.
    Environ Microbiol; 2008 Feb; 10(2):400-12. PubMed ID: 18177369
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. [Biogeochemical processes of methane cycle in the soils, swamps and lakes of Western Siberia].
    Gal'chenko VF, Dulov LE, Cramer B, Konova NI, Barysheva SV.
    Mikrobiologiia; 2001 Feb; 70(2):215-25. PubMed ID: 11386054
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. [Methanotrophic bacteria of acid sphagnum bogs].
    Dedysh SN.
    Mikrobiologiia; 2002 Feb; 71(6):741-54. PubMed ID: 12526194
    [Abstract] [Full Text] [Related]

  • 32. Methane-oxidizing bacteria in fresh waters. 3. The capacity of methane utilization by methane-oxidizing enrichment cultures as revealed by gas chromatographic analyses.
    Naguib M.
    Z Allg Mikrobiol; 1971 Feb; 11(1):39-47. PubMed ID: 5557059
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Temperature limitation of methanogenesis in aquatic sediments.
    Zeikus JG, Winfrey MR.
    Appl Environ Microbiol; 1976 Jan; 31(1):99-107. PubMed ID: 821396
    [Abstract] [Full Text] [Related]

  • 38. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing.
    Cébron A, Bodrossy L, Chen Y, Singer AC, Thompson IP, Prosser JI, Murrell JC.
    FEMS Microbiol Ecol; 2007 Oct; 62(1):12-23. PubMed ID: 17714486
    [Abstract] [Full Text] [Related]

  • 39. Methane oxidation in freely and poorly drained grassland soils and effects of cattle urine application.
    Li Z, Kelliher FM.
    J Environ Qual; 2007 Oct; 36(5):1241-8. PubMed ID: 17636284
    [Abstract] [Full Text] [Related]

  • 40. [Gas chromatographic method of determining the intensity of microbiological oxidation of methane in reservoirs].
    Saralov AI.
    Mikrobiologiia; 1979 Oct; 48(1):125-8. PubMed ID: 154610
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.