These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 6807343

  • 1. Acquisition of native conformation of ribosomal 5S ribonucleic acid from Escherichia coli. Hydrodynamic and spectroscopic studies on the unfolding and refolding of ribonucleic acid.
    Fox JW, Wong KP.
    Biochemistry; 1982 Apr 27; 21(9):2096-102. PubMed ID: 6807343
    [Abstract] [Full Text] [Related]

  • 2. The role of magnesium and potassium ions in the molecular mechanism of ribosome assembly: hydrodynamic, conformational, and thermal stability studies of 16 S RNA from Escherichia coli ribosomes.
    Allen SH, Wong KP.
    Arch Biochem Biophys; 1986 Aug 15; 249(1):137-47. PubMed ID: 3527066
    [Abstract] [Full Text] [Related]

  • 3. Pathway-dependent refolding of E. coli 5S RNA.
    Weidner H, Crothers DM.
    Nucleic Acids Res; 1977 Oct 15; 4(10):3401-14. PubMed ID: 337236
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Alteration of 5S RNA conformation by ribosomal proteins L18 and L25.
    Bear DG, Schleich T, Noller HF, Garrett RA.
    Nucleic Acids Res; 1977 Jul 15; 4(7):2511-26. PubMed ID: 333392
    [Abstract] [Full Text] [Related]

  • 6. Multistate equilibrium unfolding of Escherichia coli dihydrofolate reductase: thermodynamic and spectroscopic description of the native, intermediate, and unfolded ensembles.
    Ionescu RM, Smith VF, O'Neill JC, Matthews CR.
    Biochemistry; 2000 Aug 08; 39(31):9540-50. PubMed ID: 10924151
    [Abstract] [Full Text] [Related]

  • 7. Base pairing in wheat germ ribosomal 5S RNA as measured by ultraviolet absorption, circular dichroism, and Fourier-transform infrared spectrometry.
    Li SJ, Burkey KO, Luoma GA, Alben JO, Marshall AG.
    Biochemistry; 1984 Jul 31; 23(16):3652-8. PubMed ID: 6383470
    [Abstract] [Full Text] [Related]

  • 8. Effect of magnesium ion on the structure of the 5S RNA from Escherichia coli. An imino proton magnetic resonance study of the helix I, IV, and V regions of the molecule.
    Leontis NB, Ghosh P, Moore PB.
    Biochemistry; 1986 Nov 18; 25(23):7386-92. PubMed ID: 3542026
    [Abstract] [Full Text] [Related]

  • 9. Secondary structure features of ribosomal RNA species within intact ribosomal subunits and efficiency of RNA-protein interactions in thermoacidophilic (Caldariella acidophila, Bacillus acidocaldarius) and mesophilic (Escherichia coli) bacteria.
    Cammarano P, Mazzei F, Londei P, Teichner A, de Rosa M, Gambacorta A.
    Biochim Biophys Acta; 1983 Aug 02; 740(3):300-12. PubMed ID: 6347258
    [Abstract] [Full Text] [Related]

  • 10. A study of the influence of magnesium ions on the conformation of ribosomal ribonucleic acid and on the stability of the larger subribosomal particle of rabbit reticulocytes.
    Cox RA, Hirst W.
    Biochem J; 1976 Dec 15; 160(3):505-19. PubMed ID: 797388
    [Abstract] [Full Text] [Related]

  • 11. A comparison of the unfolding and dissociation of the large ribosome subunits from Rhodopseudomonas spheroides N.C.I.B. 8253 and Escherichia coli M.R.E. 600.
    Robinson A, Sykes J.
    Biochem J; 1973 Aug 15; 133(4):739-47. PubMed ID: 4201305
    [Abstract] [Full Text] [Related]

  • 12. Base pairing in Bacillus subtilis ribosomal 5S RNA as measured by ultraviolet absorption and Fourier-transform infrared spectrometry.
    Chang LH, Burkey KO, Alben JO, Marshall AG.
    Biochemistry; 1984 Jul 31; 23(16):3659-62. PubMed ID: 6433974
    [Abstract] [Full Text] [Related]

  • 13. Conformation of 4.5S RNA in the signal recognition particle and on the 30S ribosomal subunit.
    Gu SQ, Jöckel J, Beinker P, Warnecke J, Semenkov YP, Rodnina MV, Wintermeyer W.
    RNA; 2005 Sep 31; 11(9):1374-84. PubMed ID: 16043501
    [Abstract] [Full Text] [Related]

  • 14. Folding of yeast 5S ribosomal RNA induced by magnesium binding.
    Maruyama S, Sugai S.
    J Biochem; 1980 Jul 31; 88(1):151-8. PubMed ID: 6997282
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Real-time refolding studies of 6-19F-tryptophan labeled Escherichia coli dihydrofolate reductase using stopped-flow NMR spectroscopy.
    Hoeltzli SD, Frieden C.
    Biochemistry; 1996 Dec 24; 35(51):16843-51. PubMed ID: 8988023
    [Abstract] [Full Text] [Related]

  • 18. Determination of base pairing in ribonucleic acid by Fourier-transform infrared spectrometry: yeast ribosomal 5S ribonucleic acid.
    Burkey KO, Marshall AG, Alben JO.
    Biochemistry; 1983 Aug 30; 22(18):4223-9. PubMed ID: 6354249
    [Abstract] [Full Text] [Related]

  • 19. Unfolding of the 30S ribosomal subunit of Escherichia coli and the conformation of the unfolded subunit. Parallel sedimentation and optical rotatory dispersion studies.
    Eilam Y, Elson D.
    Biochemistry; 1971 Apr 13; 10(8):1489-95. PubMed ID: 4996353
    [No Abstract] [Full Text] [Related]

  • 20. Chemical reactivity of E. coli 5S RNA in situ in the 50S ribosomal subunit.
    Silberklang M, RajBhandary UL, Lück A, Erdmann VA.
    Nucleic Acids Res; 1983 Feb 11; 11(3):605-17. PubMed ID: 6340064
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.