These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 6807368

  • 1. Flows of red blood cell suspensions through narrow two-dimensional channels.
    Chan T, Jaffrin MY, Seshadri V, Mc Kay C.
    Biorheology; 1982; 19(1/2):253-67. PubMed ID: 6807368
    [Abstract] [Full Text] [Related]

  • 2. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology.
    Antonova N, Riha P, Ivanov I, Gluhcheva Y.
    Clin Hemorheol Microcirc; 2011; 49(1-4):441-50. PubMed ID: 22214715
    [Abstract] [Full Text] [Related]

  • 3. Determination of the red blood cell apparent membrane elastic modulus from viscometric measurements.
    Drochon A, Barthes-Biesel D, Lacombe C, Lelievre JC.
    J Biomech Eng; 1990 Aug; 112(3):241-9. PubMed ID: 2120513
    [Abstract] [Full Text] [Related]

  • 4. Effect of normal human erythrocytes on blood rheology in microcirculation.
    Hirata C, Kobayashi H, Mizuno N, Kutsuna H, Ishina K, Ishii M.
    Osaka City Med J; 2007 Dec; 53(2):73-85. PubMed ID: 18432063
    [Abstract] [Full Text] [Related]

  • 5. Effect of high osmotic media on blood viscosity and red blood cell deformability.
    Yamamoto A, Niimi H.
    Biorheology; 1983 Dec; 20(5):615-22. PubMed ID: 6677281
    [Abstract] [Full Text] [Related]

  • 6. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D, Imai Y, Nakaaki K, Ishikawa T, Yamaguchi T.
    J Biomech; 2012 Oct 11; 45(15):2684-9. PubMed ID: 22981440
    [Abstract] [Full Text] [Related]

  • 7. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter.
    Reinke W, Johnson PC, Gaehtgens P.
    Circ Res; 1986 Aug 11; 59(2):124-32. PubMed ID: 3742742
    [Abstract] [Full Text] [Related]

  • 8. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation.
    Reinke W, Gaehtgens P, Johnson PC.
    Am J Physiol; 1987 Sep 11; 253(3 Pt 2):H540-7. PubMed ID: 3631291
    [Abstract] [Full Text] [Related]

  • 9. Cross-sectional distributions of normal and abnormal red blood cells in capillary tubes determined by a new technique.
    Sasaki T, Seki J, Itano T, Sugihara-Seki M.
    Biorheology; 2018 Sep 11; 54(5-6):153-165. PubMed ID: 29614620
    [Abstract] [Full Text] [Related]

  • 10. Alteration of red cell membrane viscoelasticity by heat treatment: effect on cell deformability and suspension viscosity.
    Nash GB, Meiselman HJ.
    Biorheology; 1985 Sep 11; 22(1):73-84. PubMed ID: 3986320
    [Abstract] [Full Text] [Related]

  • 11. Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions.
    McKay CB, Meiselman HJ.
    Am J Physiol; 1988 Feb 11; 254(2 Pt 2):H238-49. PubMed ID: 3344815
    [Abstract] [Full Text] [Related]

  • 12. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates.
    Cokelet GR, Goldsmith HL.
    Circ Res; 1991 Jan 11; 68(1):1-17. PubMed ID: 1984854
    [Abstract] [Full Text] [Related]

  • 13. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows.
    Zhang J, Johnson PC, Popel AS.
    Microvasc Res; 2009 May 11; 77(3):265-72. PubMed ID: 19323969
    [Abstract] [Full Text] [Related]

  • 14. Cellular determinants of low-shear blood viscosity.
    Baskurt OK, Meiselman HJ.
    Biorheology; 1997 May 11; 34(3):235-47. PubMed ID: 9474265
    [Abstract] [Full Text] [Related]

  • 15. The time course of filtration test as a model for microvascular plugging by white cells and hardened red cells.
    Reinhart WH, Chien S.
    Microvasc Res; 1987 Jul 11; 34(1):1-12. PubMed ID: 3116369
    [Abstract] [Full Text] [Related]

  • 16. Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes.
    Pal R.
    J Biomech; 2003 Jul 11; 36(7):981-9. PubMed ID: 12757807
    [Abstract] [Full Text] [Related]

  • 17. Comparative rheology of nucleated and non-nucleated red blood cells. II. Rheological properties of avian red cells suspensions in narrow capillaries.
    Gaehtgens P, Will G, Schmidt F.
    Pflugers Arch; 1981 Jun 11; 390(3):283-7. PubMed ID: 7196029
    [Abstract] [Full Text] [Related]

  • 18. A three-layer semi-empirical model for flow of blood and other particulate suspensions through narrow tubes.
    Gupta BB, Nigam KM, Jaffrin MY.
    J Biomech Eng; 1982 May 11; 104(2):129-35. PubMed ID: 7078127
    [Abstract] [Full Text] [Related]

  • 19. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R, Mavriplis C, Fenech M.
    PLoS One; 2018 May 11; 13(7):e0199911. PubMed ID: 30024907
    [Abstract] [Full Text] [Related]

  • 20. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
    Pan W, Fedosov DA, Caswell B, Karniadakis GE.
    Microvasc Res; 2011 Sep 11; 82(2):163-70. PubMed ID: 21640731
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.