These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
144 related items for PubMed ID: 6814760
1. Role of calcium in the regulation of sugar transport in the avian erythrocyte: effects of the calcium ionophore, A23187. Bihler I, Charles P, Sawh PC. Cell Calcium; 1982 Aug; 3(3):243-62. PubMed ID: 6814760 [Abstract] [Full Text] [Related]
2. Monensin stimulates sugar transport in avian erythrocytes. Bihler I, Charles P, Sawh PC. Biochim Biophys Acta; 1985 Nov 21; 821(1):37-44. PubMed ID: 4063360 [Abstract] [Full Text] [Related]
3. Sugar transport regulation in avian red blood cells: role of Ca2+ in the stimulatory effects of anoxia, adrenaline, and ascorbic acid. Bihler I, Charles P, Sawh PC. Can J Physiol Pharmacol; 1982 May 21; 60(5):615-21. PubMed ID: 6809299 [Abstract] [Full Text] [Related]
4. Stimulation of glucose transport in skeletal muscle by the sodium ionophore monensin. Bihler I, Sawh PC, Charles P. Biochim Biophys Acta; 1985 Nov 21; 821(1):30-6. PubMed ID: 4063359 [Abstract] [Full Text] [Related]
5. Regulation of glucose transport in Ca2+-tolerant myocytes from adult rat heart. Bihler I, McNevin SR, Sawh PC. Biochim Biophys Acta; 1985 Aug 30; 846(2):208-15. PubMed ID: 2411296 [Abstract] [Full Text] [Related]
6. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187. Campbell AK, Siddle K. Biochem J; 1976 Aug 15; 158(2):211-21. PubMed ID: 186033 [Abstract] [Full Text] [Related]
8. The role of calcium in the regulation of sugar transport in the pigeon red blood cell. Simons TJ. J Physiol; 1983 May 15; 338():501-25. PubMed ID: 6192238 [Abstract] [Full Text] [Related]
10. The role of calcium in stimulation of sugar transport in muscle by lithium. Bigornia L, Bihler I. Biochim Biophys Acta; 1985 Jun 27; 816(2):197-207. PubMed ID: 4005243 [Abstract] [Full Text] [Related]
11. Characterization of sugar transport in the pigeon red blood cell. Simons TJ. J Physiol; 1983 May 27; 338():477-99. PubMed ID: 6410059 [Abstract] [Full Text] [Related]
15. Regulation of 3-O-methyl-D-glucose uptake in isolated bovine adrenal chromaffin cells. Bigornia L, Wattis M, Bihler I. Biochim Biophys Acta; 1986 Apr 29; 886(2):177-86. PubMed ID: 3083872 [Abstract] [Full Text] [Related]
16. Maximal calcium extrusion capacity and stoichiometry of the human red cell calcium pump. Dagher G, Lew VL. J Physiol; 1988 Dec 29; 407():569-86. PubMed ID: 3151497 [Abstract] [Full Text] [Related]
17. Calcium transport mechanisms in dog red blood cells studied from measurements of initial flux rates. Altamirano AA, Beaugé L. Cell Calcium; 1985 Dec 29; 6(6):503-25. PubMed ID: 3937600 [Abstract] [Full Text] [Related]
19. Effects of ATP depletion on the mechanism of hexose transport in intact human erythrocytes. May JM. FEBS Lett; 1988 Dec 05; 241(1-2):188-90. PubMed ID: 3143605 [Abstract] [Full Text] [Related]