These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 6816249

  • 1. Effect of metal chelators and antiinflammatory drugs on the degradation of hyaluronic acid.
    Betts WH, Cleland LG.
    Arthritis Rheum; 1982 Dec; 25(12):1469-76. PubMed ID: 6816249
    [Abstract] [Full Text] [Related]

  • 2. Role of iron and influence of antiinflammatory drugs on oxygen-derived free radical production and reactivity.
    Cleland LG, Betts WH, Vernon-Roberts B, Bielicki J.
    J Rheumatol; 1982 Dec; 9(6):885-92. PubMed ID: 7161780
    [Abstract] [Full Text] [Related]

  • 3. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW, Feierman DE, Cederbaum AI.
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [Abstract] [Full Text] [Related]

  • 4. Effect of palosein (superoxide dismutase) and catalase upon oxygen derived free radical induced degradation of equine synovial fluid.
    Auer DE, Ng JC, Seawright AA.
    Equine Vet J; 1990 Jan; 22(1):13-7. PubMed ID: 2298185
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Effects of D-penicillamine on a model of oxygen-derived free radical mediated tissue damage.
    Betts WH, Cleland LG, Gee DJ, Whitehouse MW.
    Agents Actions; 1984 Feb; 14(2):283-90. PubMed ID: 6424424
    [Abstract] [Full Text] [Related]

  • 7. The inability of superoxide dismutase to inhibit the depolymerization of hyaluronic acid by ferrous ions and ascorbate.
    Hofmann H, Schmut O.
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1980 Feb; 214(3):181-5. PubMed ID: 6905674
    [Abstract] [Full Text] [Related]

  • 8. Influence of oxygen free radicals and free radical scavengers on the growth behaviour and oxidative tissue damage of bovine retinal pigment epithelium cells in vitro.
    Augustin AJ, Hunt S, Breipohl W, Böker T, Spitznas M.
    Graefes Arch Clin Exp Ophthalmol; 1996 Jan; 234(1):58-63. PubMed ID: 8750852
    [Abstract] [Full Text] [Related]

  • 9. Superoxide radical potentiates invasive capacity of rat ascites hepatoma cells in vitro.
    Shinkai K, Mukai M, Akedo H.
    Cancer Lett; 1986 Jul; 32(1):7-13. PubMed ID: 3017547
    [Abstract] [Full Text] [Related]

  • 10. Xanthine oxidase inhibits transmembrane signal transduction in vascular endothelial cells.
    Wesson DE, Elliott SJ.
    J Pharmacol Exp Ther; 1994 Sep; 270(3):1197-207. PubMed ID: 7932172
    [Abstract] [Full Text] [Related]

  • 11. Intermediates in the aerobic autoxidation of 6-hydroxydopamine: relative importance under different reaction conditions.
    Gee P, Davison AJ.
    Free Radic Biol Med; 1989 Sep; 6(3):271-84. PubMed ID: 2545550
    [Abstract] [Full Text] [Related]

  • 12. Streptonigrin-induced deoxyribose degradation: inhibition by superoxide dismutase, hydroxyl radical scavengers and iron chelators.
    Gutteridge JM.
    Biochem Pharmacol; 1984 Oct 01; 33(19):3059-62. PubMed ID: 6091667
    [Abstract] [Full Text] [Related]

  • 13. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR, Krishnamurthy S.
    Indian J Biochem Biophys; 1993 Oct 01; 30(5):289-92. PubMed ID: 8144174
    [Abstract] [Full Text] [Related]

  • 14. Oxygen-derived free radical (ODFR) action on hyaluronan (HA), on two HA ester derivatives, and on the metabolism of articular chondrocytes.
    Kvam BJ, Fragonas E, Degrassi A, Kvam C, Matulova M, Pollesello P, Zanetti F, Vittur F.
    Exp Cell Res; 1995 May 01; 218(1):79-86. PubMed ID: 7737382
    [Abstract] [Full Text] [Related]

  • 15. Hyaluronic acid synthesis in articular cartilage: an inhibition by hydrogen peroxide.
    Bates EJ, Lowther DA, Johnson CC.
    Biochem Biophys Res Commun; 1985 Oct 30; 132(2):714-20. PubMed ID: 3840689
    [Abstract] [Full Text] [Related]

  • 16. Susceptibility of micro-organisms to active oxygen species: sensitivity to the xanthine-oxidase-mediated antimicrobial system.
    Yamada Y, Saito H, Tomioka H, Jidoi J.
    J Gen Microbiol; 1987 Aug 30; 133(8):2007-14. PubMed ID: 3127535
    [Abstract] [Full Text] [Related]

  • 17. Effects of oxygen free radicals and scavengers on the cardiac extracellular collagen matrix during ischemia-reperfusion.
    Lonn E, Factor SM, Van Hoeven KH, Wen WH, Zhao M, Dawood F, Liu P.
    Can J Cardiol; 1994 Mar 30; 10(2):203-13. PubMed ID: 8143221
    [Abstract] [Full Text] [Related]

  • 18. Effect of oxygen-derived reactive species on cartilage proteoglycan-hyaluronate aggregates.
    Bates EJ, Harper GS, Lowther DA, Preston BN.
    Biochem Int; 1984 May 30; 8(5):629-37. PubMed ID: 6548142
    [Abstract] [Full Text] [Related]

  • 19. Xanthine oxidase induced depolymerization of hyaluronic acid in the presence of ferritin.
    Carlin G, Djursäter R.
    FEBS Lett; 1984 Nov 05; 177(1):27-30. PubMed ID: 6094241
    [Abstract] [Full Text] [Related]

  • 20. Xanthine oxidase-induced injury to endothelium: role of intracellular iron and hydroxyl radical.
    Kvietys PR, Inauen W, Bacon BR, Grisham MB.
    Am J Physiol; 1989 Nov 05; 257(5 Pt 2):H1640-6. PubMed ID: 2556049
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.