These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


103 related items for PubMed ID: 6820149

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Extracellular matrix-cell interactions and chondrogenesis.
    Huang D.
    Clin Orthop Relat Res; 1977; (123):169-76. PubMed ID: 852175
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. An immunological study of cartilage differentiation in cultures of chick limb bud cells: influence of a tumor promoter (TPA) on chondrogenesis and on extracellular matrix formation.
    Sasse J, von der Mark K, Pacifici M, Holtzer H.
    Prog Clin Biol Res; 1982; 110 Pt B():159-66. PubMed ID: 7167568
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Tenascin-C is associated with early stages of chondrogenesis by chick mandibular ectomesenchymal cells in vivo and in vitro.
    Gluhak J, Mais A, Mina M.
    Dev Dyn; 1996 Jan; 205(1):24-40. PubMed ID: 8770549
    [Abstract] [Full Text] [Related]

  • 9. Transforming growth factor-beta and bone morphogenetic protein-2 act by distinct mechanisms to promote chick limb cartilage differentiation in vitro.
    Roark EF, Greer K.
    Dev Dyn; 1994 Jun; 200(2):103-16. PubMed ID: 7919498
    [Abstract] [Full Text] [Related]

  • 10. Differentiation of mesenchymal limb bud cells to chondrocytes in alginate beads.
    Shakibaei M, De Souza P.
    Cell Biol Int; 1997 Feb; 21(2):75-86. PubMed ID: 9080655
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Expression of proteoglycans by cultured chick sternal chondrocytes.
    McClure SF, Stoddart RW, McClure J.
    Biochem Biophys Res Commun; 1998 Jul 20; 248(2):262-7. PubMed ID: 9675124
    [Abstract] [Full Text] [Related]

  • 13. Proteoglycans of cartilage.
    Muir H.
    J Clin Pathol Suppl (R Coll Pathol); 1978 Jul 20; 12():67-81. PubMed ID: 365895
    [No Abstract] [Full Text] [Related]

  • 14. Expression of Sox9 and type IIA procollagen during attempted repair of articular cartilage damage in a transgenic mouse model of osteoarthritis.
    Salminen H, Vuorio E, Säämänen AM.
    Arthritis Rheum; 2001 Apr 20; 44(4):947-55. PubMed ID: 11315934
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Beta 1 integrins mediate chondrocyte interaction with type I collagen, type II collagen, and fibronectin.
    Enomoto M, Leboy PS, Menko AS, Boettiger D.
    Exp Cell Res; 1993 Apr 20; 205(2):276-85. PubMed ID: 8387015
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Metabolic kinetics of proteoglycans by embryonic chick sternal cartilage in culture.
    Liu H, Bee JA, Lees P.
    Arch Biochem Biophys; 1999 Jul 15; 367(2):225-32. PubMed ID: 10395738
    [Abstract] [Full Text] [Related]

  • 19. Influence of matricial molecules on growth and differentiation of entrapped chondrocytes.
    Ramdi H, Legay C, Lièvremont M.
    Exp Cell Res; 1993 Aug 15; 207(2):449-54. PubMed ID: 8344393
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.