These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 6826311

  • 1. Morphologic changes in teleost primary and secondary retinal cells following brief exposure to light.
    Wagner HJ, Douglas RH.
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):24-9. PubMed ID: 6826311
    [Abstract] [Full Text] [Related]

  • 2. Retinomotor pigment migration in the teleost retinal pigment epithelium. I. Roles for actin and microtubules in pigment granule transport and cone movement.
    Burnside B, Adler R, O'Connor P.
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):1-15. PubMed ID: 6826305
    [Abstract] [Full Text] [Related]

  • 3. Endogenous control of spinule formation in horizontal cells of the teleost retina.
    Douglas RH, Wagner HJ.
    Cell Tissue Res; 1983 Jan; 229(2):443-9. PubMed ID: 6850755
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Ultrastructure and organisation of the retina and pigment epithelium in the cutlips minnow, Exoglossum maxillingua (Cyprinidae, Teleostei).
    Collin SP, Collin HB, Ali MA.
    Histol Histopathol; 1996 Jan; 11(1):55-69. PubMed ID: 8720448
    [Abstract] [Full Text] [Related]

  • 6. Retinomotor pigment migration in the teleost retinal pigment epithelium. II. Cyclic-3',5'-adenosine monophosphate induction of dark-adaptive movement in vitro.
    Burnside B, Basinger S.
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):16-23. PubMed ID: 6186630
    [Abstract] [Full Text] [Related]

  • 7. Light-adaptive role of nitric oxide in the outer retina of lower vertebrates: a brief review.
    Djamgoz MB, Sekaran S, Angotzi AR, Haamedi S, Vallerga S, Hirano J, Yamada M.
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep 29; 355(1401):1199-203. PubMed ID: 11079398
    [Abstract] [Full Text] [Related]

  • 8. Time course and development of light adaptation processes in the outer zebrafish retina.
    Hodel C, Neuhauss SC, Biehlmaier O.
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Jun 29; 288(6):653-62. PubMed ID: 16721865
    [Abstract] [Full Text] [Related]

  • 9. Prostaglandins E1, E2, and D2 induce dark-adaptive retinomotor movements in teleost retinal cones and RPE.
    Cavallaro B, Burnside B.
    Invest Ophthalmol Vis Sci; 1988 Jun 29; 29(6):882-91. PubMed ID: 3131263
    [Abstract] [Full Text] [Related]

  • 10. [Effects of prolonged darkness and background illumination on cone horizontal cells in carp retina: a correlative study of morphology and physiology].
    Zhang J, Song XE, Wang HH, Yang XL.
    Sheng Li Xue Bao; 1992 Apr 29; 44(2):155-63. PubMed ID: 1320293
    [Abstract] [Full Text] [Related]

  • 11. The eye of the venomous marine teleost Trachinus vipera with special reference to the structure and ultrastructure of visual cells and pigment epithelium.
    Kunz YW, Ni Shuilleabhain M, Callaghan E.
    Exp Biol; 1985 Apr 29; 43(3):161-78. PubMed ID: 3846536
    [Abstract] [Full Text] [Related]

  • 12. Fine structure of the retina and pigment epithelium in the creek chub, Semotilus atromaculatus (Cyprinidae, Teleostei).
    Collin SP, Collin HB, Ali MA.
    Histol Histopathol; 1996 Jan 29; 11(1):41-53. PubMed ID: 8720447
    [Abstract] [Full Text] [Related]

  • 13. Light-induced photoreceptor shedding in teleost retina blocked by dibutyryl cyclic AMP.
    Eckmiller MS, Burnside B.
    Invest Ophthalmol Vis Sci; 1983 Sep 29; 24(9):1328-32. PubMed ID: 6309697
    [Abstract] [Full Text] [Related]

  • 14. Circadian rhythms in teleost retinomotor movement. A comparison of the effects of circadian rhythm and light condition on cone length.
    Levinson G, Burnside B.
    Invest Ophthalmol Vis Sci; 1981 Mar 29; 20(3):294-303. PubMed ID: 7203876
    [Abstract] [Full Text] [Related]

  • 15. Retinal organization of the eyes of three nototheniid fishes from the Ross Sea (Antarctica).
    Meyer-Rochow VB, Klyne MA.
    Gegenbaurs Morphol Jahrb; 1982 Mar 29; 128(5):762-77. PubMed ID: 7152226
    [Abstract] [Full Text] [Related]

  • 16. Endogenous patterns of photomechanical movements in teleosts and their relation to activity rhythms.
    Douglas RH, Wagner HJ.
    Cell Tissue Res; 1982 Mar 29; 226(1):133-44. PubMed ID: 7127415
    [Abstract] [Full Text] [Related]

  • 17. Effect of light and dark on the developing retina of the Egyptian toad, Bufo regularis.
    Michael MI, el-Mekkawy DA, Rizk TA.
    Shi Yan Sheng Wu Xue Bao; 1994 Jun 29; 27(2):225-39. PubMed ID: 7976061
    [Abstract] [Full Text] [Related]

  • 18. [Demonstration of dynamic epithelial rods in the retinal adaptation to lighting variations in the carp (Cyprinus caprio L.)].
    Chèze G.
    C R Seances Soc Biol Fil; 1974 Jun 29; 168(8-9):1107-10. PubMed ID: 4282321
    [No Abstract] [Full Text] [Related]

  • 19. Fine structure and radioautography of retinal cone outer segments in goldfish and carp.
    Bunt AH, Klock IB.
    Invest Ophthalmol Vis Sci; 1980 Jul 29; 19(7):707-19. PubMed ID: 7390721
    [Abstract] [Full Text] [Related]

  • 20. Light adaptation affects synaptic vesicle density but not the distribution of GABAA receptors in goldfish photoreceptor terminals.
    Yazulla S, Studholme KM.
    Microsc Res Tech; 1997 Jan 01; 36(1):43-56. PubMed ID: 9031260
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.