These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 6849877

  • 1. Chlortetracycline as a probe of membrane-associated calcium and magnesium: interaction with red cell membranes, phospholipids, and proteins monitored by fluorescence and circular dichroism.
    Schneider AS, Herz R, Sonenberg M.
    Biochemistry; 1983 Mar 29; 22(7):1680-6. PubMed ID: 6849877
    [Abstract] [Full Text] [Related]

  • 2. Use of chlortetracycline fluorescence for the detection of Ca storing intracellular vesicles in normal human erythrocytes.
    Engelmann B, Schumacher U, Duhm J.
    J Cell Physiol; 1990 May 29; 143(2):357-63. PubMed ID: 2332457
    [Abstract] [Full Text] [Related]

  • 3. Chlorotetracycline induces calcium mediated shape changes in human erythrocytes. Is Ca asymmetrically distributed in the red cell membrane?
    Behn C, Lübbemeier A, Weskamp P.
    Pflugers Arch; 1977 May 29; 372(3):259-68. PubMed ID: 564049
    [Abstract] [Full Text] [Related]

  • 4. Lipid monolayer expansion by calcium-chlorotetracycline at the air/water interface and, as inferred from cell shape changes, in the human erythrocyte membrane.
    Riquelme G, Jaimovich E, Lingsch C, Behn C.
    Biochim Biophys Acta; 1982 Jul 28; 689(2):219-29. PubMed ID: 7115708
    [Abstract] [Full Text] [Related]

  • 5. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. I. Use of chlorotetracycline as fluorescent probe.
    Chandler DE, Williams JA.
    J Cell Biol; 1978 Feb 28; 76(2):371-85. PubMed ID: 10605444
    [Abstract] [Full Text] [Related]

  • 6. Studies on beta-endorphin and membrane-bound calcium interaction using chlorotetracycline (CTC) as a fluorescence probe.
    Chakrabarti AK, Chatterjee TK, Ghosh JJ.
    Peptides; 1983 Feb 28; 4(3):273-6. PubMed ID: 6314290
    [Abstract] [Full Text] [Related]

  • 7. Studies on the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. V. Chlortetracycline fluorescence.
    Gimble JM, Gustin M, Goodman DB, Rasmussen H.
    Biochim Biophys Acta; 1982 Mar 08; 685(3):253-9. PubMed ID: 6802179
    [Abstract] [Full Text] [Related]

  • 8. Active calcium transport in normal and abnormal human erythrocytes.
    Al-Jobore A, Minocherhomjee AM, Villalobo A, Roufogalis BD.
    Prog Clin Biol Res; 1984 Mar 08; 159():243-92. PubMed ID: 6236466
    [No Abstract] [Full Text] [Related]

  • 9. TRH mobilizes membrane calcium in thyrotropic cells as monitored by chlortetracycline.
    Gershengorn MC, Thaw C.
    Am J Physiol; 1982 Oct 08; 243(4):E298-304. PubMed ID: 6812433
    [Abstract] [Full Text] [Related]

  • 10. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. II. Subcellular localization of the fluorescent probe chlorotetracycline.
    Chandler DE, Williams JA.
    J Cell Biol; 1978 Feb 08; 76(2):386-99. PubMed ID: 10605445
    [Abstract] [Full Text] [Related]

  • 11. Interaction of calmodulin-binding domain peptides of nitric oxide synthase with membrane phospholipids: regulation by protein phosphorylation and Ca(2+)-calmodulin.
    Matsubara M, Titani K, Taniguchi H.
    Biochemistry; 1996 Nov 19; 35(46):14651-8. PubMed ID: 8931564
    [Abstract] [Full Text] [Related]

  • 12. Interaction of adriamycin with human erythrocyte membranes. Role of the negatively charged phospholipids.
    Garnier-Suillerot A, Gattegno L.
    Biochim Biophys Acta; 1988 Oct 26; 936(1):50-60. PubMed ID: 2972315
    [Abstract] [Full Text] [Related]

  • 13. Maintenance and regulation of asymmetric phospholipid distribution in human erythrocyte membranes: implications for erythrocyte functions.
    Arashiki N, Takakuwa Y.
    Curr Opin Hematol; 2017 May 26; 24(3):167-172. PubMed ID: 28118222
    [Abstract] [Full Text] [Related]

  • 14. The interaction of spectrin - actin and synthetic phospholipids.
    Mombers C, van Dijck PW, van Deenen LL, de Gier J, Verkleij AJ.
    Biochim Biophys Acta; 1977 Oct 17; 470(2):152-60. PubMed ID: 911826
    [Abstract] [Full Text] [Related]

  • 15. [The mode of action of antifungal agents. Effect of horse erythrocyte membranes on amphotericin B].
    Moulki H, Lematre J, Pierfitte M.
    C R Seances Soc Biol Fil; 1976 Oct 17; 170(5):994-8. PubMed ID: 139999
    [Abstract] [Full Text] [Related]

  • 16. Studies on the organization of plasma membrane phospholipids in human erythrocytes.
    Schwartz RS, Chiu DT, Lubin B.
    Prog Clin Biol Res; 1984 Oct 17; 159():89-122. PubMed ID: 6473467
    [No Abstract] [Full Text] [Related]

  • 17. Fluorescent studies on the interaction between a novel Ca2+ antagonist, SR 33557, and membrane lipids.
    Chatelain P, Matteazzi JR, Laruel R.
    Biochem Pharmacol; 1992 Apr 01; 43(7):1513-20. PubMed ID: 1567475
    [Abstract] [Full Text] [Related]

  • 18. Ca(2+)-dependent binding of endonexin (annexin IV) to membranes: analysis of the effects of membrane lipid composition and development of a predictive model for the binding interaction.
    Junker M, Creutz CE.
    Biochemistry; 1994 Aug 02; 33(30):8930-40. PubMed ID: 8043580
    [Abstract] [Full Text] [Related]

  • 19. Metabolism of phosphoinositides in the rat erythrocyte membrane. A reappraisal of the effect of magnesium on the 32P incorporation into polyphosphoinositides.
    Marche P, Koutouzov S, Meyer P.
    Biochim Biophys Acta; 1982 Mar 12; 710(3):332-40. PubMed ID: 6280772
    [Abstract] [Full Text] [Related]

  • 20. Magnesium permeability of sarcoplasmic reticulum vesicles monitored in terms of chlortetracycline fluorescence.
    Nagasaki K, Kasai M.
    J Biochem; 1980 Mar 12; 87(3):709-16. PubMed ID: 7390959
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.