These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


172 related items for PubMed ID: 6849917

  • 1. Formation of aqueous pores in the human erythrocyte membrane after oxidative cross-linking of spectrin by diamide.
    Deuticke B, Poser B, Lütkemeier P, Haest CW.
    Biochim Biophys Acta; 1983 Jun 10; 731(2):196-210. PubMed ID: 6849917
    [Abstract] [Full Text] [Related]

  • 2. Oxidative stress of human erythrocytes by iodate and periodate. Reversible formation of aqueous membrane pores due to SH-group oxidation.
    Heller KB, Poser B, Haest CW, Deuticke B.
    Biochim Biophys Acta; 1984 Oct 17; 777(1):107-16. PubMed ID: 6091752
    [Abstract] [Full Text] [Related]

  • 3. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane.
    Haest CW, Plasa G, Kamp D, Deuticke B.
    Biochim Biophys Acta; 1978 May 04; 509(1):21-32. PubMed ID: 647006
    [Abstract] [Full Text] [Related]

  • 4. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. III. Permeability of spectrin-depleted inside-out membrane vesicles to hydrophilic nonelectrolytes. Formation of leaks by chemical or enzymatic modification of membrane proteins.
    Klonk S, Deuticke B.
    Biochim Biophys Acta; 1992 Apr 29; 1106(1):143-50. PubMed ID: 1581327
    [Abstract] [Full Text] [Related]

  • 5. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. I. Impairment of resealing and formation of aqueous pores in the ghost membrane after modification of SH groups.
    Klonk S, Deuticke B.
    Biochim Biophys Acta; 1992 Apr 29; 1106(1):126-36. PubMed ID: 1581324
    [Abstract] [Full Text] [Related]

  • 6. The effect of mild diamide oxidation on the structure and function of human erythrocyte spectrin.
    Becker PS, Cohen CM, Lux SE.
    J Biol Chem; 1986 Apr 05; 261(10):4620-8. PubMed ID: 3957910
    [Abstract] [Full Text] [Related]

  • 7. Selective alteration of erythrocyte deformabiliby by SH-reagents: evidence for an involvement of spectrin in membrane shear elasticity.
    Fischer TM, Haest CW, Stöhr M, Kamp D, Deuticke B.
    Biochim Biophys Acta; 1978 Jul 04; 510(2):270-82. PubMed ID: 667045
    [Abstract] [Full Text] [Related]

  • 8. Cross-linking of SH-groups in the erythrocyte membrane enhances transbilayer reorientation of phospholipids. Evidence for a limited access of phospholipids to the reorientation sites.
    Bergmann WL, Dressler V, Haest CW, Deuticke B.
    Biochim Biophys Acta; 1984 Jan 25; 769(2):390-8. PubMed ID: 6696889
    [Abstract] [Full Text] [Related]

  • 9. Does diamide treatment of intact human erythrocytes cause a loss of phospholipid asymmetry?
    Franck PF, Op den Kamp JA, Roelofsen B, van Deenen LL.
    Biochim Biophys Acta; 1986 May 09; 857(1):127-30. PubMed ID: 3964704
    [Abstract] [Full Text] [Related]

  • 10. Intra- and intermolecular cross-linking of membrane proteins in intact erythrocytes and ghosts by SH-oxidizing agents.
    Haest CW, Kamp D, Plasa G, Deuticke B.
    Biochim Biophys Acta; 1977 Sep 05; 469(2):226-30. PubMed ID: 901784
    [Abstract] [Full Text] [Related]

  • 11. Alteration of rheological properties of human erythrocytes by crosslinking of membrane proteins.
    Maeda N, Kon K, Imaizumi K, Sekiya M, Shiga T.
    Biochim Biophys Acta; 1983 Oct 26; 735(1):104-12. PubMed ID: 6626542
    [Abstract] [Full Text] [Related]

  • 12. The spectrin phosphorylation reaction in human erythrocytes.
    Greenquist AC, Wyatt JL, Guatelli JC, Shohet SB.
    Prog Clin Biol Res; 1978 Oct 26; 20():1-24. PubMed ID: 652813
    [Abstract] [Full Text] [Related]

  • 13. Hemolysis of human erythrocytes under hydrostatic pressure is suppressed by cross-linking of membrane proteins.
    Kitajima H, Yamaguchi T, Kimoto E.
    J Biochem; 1990 Dec 26; 108(6):1057-62. PubMed ID: 2150965
    [Abstract] [Full Text] [Related]

  • 14. Cross bonding and stiffening of the red cell membrane.
    Fischer TM.
    Biochim Biophys Acta; 1989 Oct 16; 985(2):218-28. PubMed ID: 2804105
    [Abstract] [Full Text] [Related]

  • 15. Aggregation of intramembrane particles in erythrocyte membranes treated with diamide.
    Kurantsin-Mills J, Lessin LS.
    Biochim Biophys Acta; 1981 Feb 20; 641(1):129-37. PubMed ID: 7213709
    [Abstract] [Full Text] [Related]

  • 16. [Effect of diamide on protein oxidation and physico-chemical properties of lipids in erythrocyte membranes].
    Kozlova NM, Luk'ianenko LM, Antonovich AN, Kut'ko AG, Zubritskaia GP, Slobozhanina EI.
    Biofizika; 2002 Feb 20; 47(3):500-5. PubMed ID: 12068607
    [Abstract] [Full Text] [Related]

  • 17. Formation of disulfide bonds between glutathione and membrane SH groups in human erythrocytes.
    Haest CW, Kamp D, Deuticke B.
    Biochim Biophys Acta; 1979 Nov 02; 557(2):363-71. PubMed ID: 497187
    [No Abstract] [Full Text] [Related]

  • 18. Tellurite-induced damage of the erythrocyte membrane. Manifestations and mechanisms.
    Deuticke B, Lütkemeier P, Poser B.
    Biochim Biophys Acta; 1992 Aug 10; 1109(1):97-107. PubMed ID: 1504084
    [Abstract] [Full Text] [Related]

  • 19. Photosensitized cross-linking of erythrocyte membrane proteins. Evidence against participation of amino groups in the reaction.
    Girotti AW.
    Biochim Biophys Acta; 1980 Oct 16; 602(1):45-56. PubMed ID: 7417451
    [Abstract] [Full Text] [Related]

  • 20. Direct involvement of spectrin thiols in maintaining erythrocyte membrane thermal stability and spectrin dimer self-association.
    Streichman S, Hertz E, Tatarsky I.
    Biochim Biophys Acta; 1988 Jul 21; 942(2):333-40. PubMed ID: 3395616
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.