These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


146 related items for PubMed ID: 6854199

  • 1. Locomotory stresses in the limb bones of two small mammals: the ground squirrel and chipmunk.
    Biewener AA.
    J Exp Biol; 1983 Mar; 103():131-54. PubMed ID: 6854199
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Functional differentiation of long bones in lorises.
    Demes B, Jungers WL.
    Folia Primatol (Basel); 1989 Mar; 52(1-2):58-69. PubMed ID: 2807094
    [Abstract] [Full Text] [Related]

  • 6. Biomechanical consequences of scaling.
    Biewener AA.
    J Exp Biol; 2005 May; 208(Pt 9):1665-76. PubMed ID: 15855398
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. In vivo strains in the femur of river cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of loading mechanics.
    Butcher MT, Espinoza NR, Cirilo SR, Blob RW.
    J Exp Biol; 2008 Aug; 211(Pt 15):2397-407. PubMed ID: 18626073
    [Abstract] [Full Text] [Related]

  • 9. Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling.
    Rubin CT, Lanyon LE.
    J Theor Biol; 1984 Mar 21; 107(2):321-7. PubMed ID: 6717041
    [Abstract] [Full Text] [Related]

  • 10. Mechanics of limb bone loading during terrestrial locomotion in river cooter turtles (Pseudemys concinna).
    Butcher MT, Blob RW.
    J Exp Biol; 2008 Apr 21; 211(Pt 8):1187-202. PubMed ID: 18375843
    [Abstract] [Full Text] [Related]

  • 11. Residual stress distribution in rabbit limb bones.
    Yamada S, Tadano S, Fujisaki K.
    J Biomech; 2011 Apr 29; 44(7):1285-90. PubMed ID: 21396648
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Scaling of the limb long bones to body mass in terrestrial mammals.
    Christiansen P.
    J Morphol; 1999 Feb 29; 239(2):167-90. PubMed ID: 9951716
    [Abstract] [Full Text] [Related]

  • 14. Scaling body support in mammals: limb posture and muscle mechanics.
    Biewener AA.
    Science; 1989 Jul 07; 245(4913):45-8. PubMed ID: 2740914
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. In vivo strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: testing hypotheses of evolutionary shifts in mammalian bone loading and design.
    Butcher MT, White BJ, Hudzik NB, Gosnell WC, Parrish JH, Blob RW.
    J Exp Biol; 2011 Aug 01; 214(Pt 15):2631-40. PubMed ID: 21753057
    [Abstract] [Full Text] [Related]

  • 17. Musculoskeletal design in relation to body size.
    Biewener AA.
    J Biomech; 1991 Aug 01; 24 Suppl 1():19-29. PubMed ID: 1791177
    [Abstract] [Full Text] [Related]

  • 18. Diversity of limb-bone safety factors for locomotion in terrestrial vertebrates: evolution and mixed chains.
    Blob RW, Espinoza NR, Butcher MT, Lee AH, D'Amico AR, Baig F, Sheffield KM.
    Integr Comp Biol; 2014 Dec 01; 54(6):1058-71. PubMed ID: 24808012
    [Abstract] [Full Text] [Related]

  • 19. The role of cross-sectional geometry, curvature, and limb posture in maintaining equal safety factors: a computed tomography study.
    Brassey CA, Kitchener AC, Withers PJ, Manning PL, Sellers WI.
    Anat Rec (Hoboken); 2013 Mar 01; 296(3):395-413. PubMed ID: 23382038
    [Abstract] [Full Text] [Related]

  • 20. Kangaroo rat locomotion: design for elastic energy storage or acceleration?
    Biewener AA, Blickhan R.
    J Exp Biol; 1988 Nov 01; 140():243-55. PubMed ID: 3204333
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.