These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


154 related items for PubMed ID: 6871216

  • 1. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system.
    De Bruijne AW, Vreeburg H, Van Steveninck J.
    Biochim Biophys Acta; 1983 Aug 10; 732(3):562-8. PubMed ID: 6871216
    [Abstract] [Full Text] [Related]

  • 2. Discrimination of three parallel pathways of lactate transport in the human erythrocyte membrane by inhibitors and kinetic properties.
    Deuticke B, Beyer E, Forst B.
    Biochim Biophys Acta; 1982 Jan 04; 684(1):96-110. PubMed ID: 7055558
    [Abstract] [Full Text] [Related]

  • 3. Alternative-substrate inhibition of L-lactate transport via the monocarboxylate-specific carrier system in human erythrocytes.
    de Bruijne AW, Vreeburg H, van Steveninck J.
    Biochim Biophys Acta; 1985 Feb 14; 812(3):841-4. PubMed ID: 3970911
    [Abstract] [Full Text] [Related]

  • 4. The mechanism of lactate transport in human erythrocytes.
    Dubinsky WP, Racker E.
    J Membr Biol; 1978 Dec 08; 44(1):25-36. PubMed ID: 32398
    [Abstract] [Full Text] [Related]

  • 5. Monocarboxylate transport in erythrocytes.
    Deuticke B.
    J Membr Biol; 1982 Dec 08; 70(2):89-103. PubMed ID: 6764785
    [No Abstract] [Full Text] [Related]

  • 6. A rabbit erythrocyte membrane protein associated with L-lactate transport.
    Jennings ML, Adams-Lackey M.
    J Biol Chem; 1982 Nov 10; 257(21):12866-71. PubMed ID: 7130184
    [Abstract] [Full Text] [Related]

  • 7. Lactate influx into red blood cells of athletic and nonathletic species.
    Skelton MS, Kremer DE, Smith EW, Gladden LB.
    Am J Physiol; 1995 May 10; 268(5 Pt 2):R1121-8. PubMed ID: 7771571
    [Abstract] [Full Text] [Related]

  • 8. Transport of lactate in Plasmodium falciparum-infected human erythrocytes.
    Kanaani J, Ginsburg H.
    J Cell Physiol; 1991 Dec 10; 149(3):469-76. PubMed ID: 1660483
    [Abstract] [Full Text] [Related]

  • 9. Monocarboxylate transport in red blood cells: kinetics and chemical modification.
    Deuticke B.
    Methods Enzymol; 1989 Dec 10; 173():300-29. PubMed ID: 2674614
    [No Abstract] [Full Text] [Related]

  • 10. Symmetry and pH dependency of the lactate/proton carrier in skeletal muscle studied with rat sarcolemmal giant vesicles.
    Juel C.
    Biochim Biophys Acta; 1996 Aug 14; 1283(1):106-10. PubMed ID: 8765101
    [Abstract] [Full Text] [Related]

  • 11. Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation.
    Casal M, Leão C.
    Biochim Biophys Acta; 1995 Jun 20; 1267(2-3):122-30. PubMed ID: 7612664
    [Abstract] [Full Text] [Related]

  • 12. Red cell metabolism affects lactate and pyruvate partition across the plasma membrane.
    Ninfali P, Piatti E, Palma F, Accorsi A, Fornaini G.
    Arch Int Physiol Biochim; 1983 Dec 20; 91(5):417-22. PubMed ID: 6204611
    [Abstract] [Full Text] [Related]

  • 13. Effects of inorganic and organic anions on the transport of phosphoenol-pyruvate across the erythrocyte membrane.
    Hamasaki N, Matsuyama H, Hirota-Chigita C, Nanri H.
    Tokai J Exp Clin Med; 1982 Dec 20; 7 Suppl():113-9. PubMed ID: 7186217
    [Abstract] [Full Text] [Related]

  • 14. L-Leucine transport in human red blood cells: a detailed kinetic analysis.
    Rosenberg R.
    J Membr Biol; 1981 Dec 20; 62(1-2):79-93. PubMed ID: 7277478
    [Abstract] [Full Text] [Related]

  • 15. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter.
    Cranmer SL, Conant AR, Gutteridge WE, Halestrap AP.
    J Biol Chem; 1995 Jun 23; 270(25):15045-52. PubMed ID: 7797486
    [Abstract] [Full Text] [Related]

  • 16. A model for the action of the anion exchange protein of the red blood cell.
    Rothstein A, Knauf PA, Grinstein S, Shami Y.
    Prog Clin Biol Res; 1979 Jun 23; 30():483-96. PubMed ID: 531039
    [Abstract] [Full Text] [Related]

  • 17. A kinetic analysis of L-tryptophan transport in human red blood cells.
    Rosenberg R.
    Biochim Biophys Acta; 1981 Dec 07; 649(2):262-8. PubMed ID: 7317397
    [Abstract] [Full Text] [Related]

  • 18. The transport of chloroquine across human erythrocyte membranes is mediated by a simple symmetric carrier.
    Yayon A, Ginsburg H.
    Biochim Biophys Acta; 1982 Apr 07; 686(2):197-203. PubMed ID: 7082662
    [Abstract] [Full Text] [Related]

  • 19. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA, Gunn RB.
    Am J Physiol; 1991 Nov 07; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.