These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
121 related items for PubMed ID: 6871425
21. Physiological significance of blood rheology. Usami S. Biorheology; 1982; 19(1/2):29-46. PubMed ID: 7093457 [Abstract] [Full Text] [Related]
22. Role of erythrocytes in leukocyte-endothelial interactions: mathematical model and experimental validation. Munn LL, Melder RJ, Jain RK. Biophys J; 1996 Jul; 71(1):466-78. PubMed ID: 8804629 [Abstract] [Full Text] [Related]
23. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Cokelet GR, Goldsmith HL. Circ Res; 1991 Jan; 68(1):1-17. PubMed ID: 1984854 [Abstract] [Full Text] [Related]
24. Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis. Sun C, Munn LL. Biophys J; 2005 Mar; 88(3):1635-45. PubMed ID: 15613630 [Abstract] [Full Text] [Related]
25. A technique for continuously measuring filtration resistance at constant pressure. Duvivier C, Arnould JP, Malher E, Fourneau C, Stoltz JF. Biorheology Suppl; 1984 Mar; 1():271-4. PubMed ID: 6236857 [Abstract] [Full Text] [Related]
26. Dynamics of erythrocyte motion in filtration tests and in vivo flow. Cokelet GR. Scand J Clin Lab Invest Suppl; 1981 Mar; 156():77-82. PubMed ID: 6948404 [Abstract] [Full Text] [Related]
27. Comparative rheology of nucleated and non-nucleated red blood cells. II. Rheological properties of avian red cells suspensions in narrow capillaries. Gaehtgens P, Will G, Schmidt F. Pflugers Arch; 1981 Jun; 390(3):283-7. PubMed ID: 7196029 [Abstract] [Full Text] [Related]
28. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability. Lipowsky HH, Cram LE, Justice W, Eppihimer MJ. Microvasc Res; 1993 Jul; 46(1):43-64. PubMed ID: 8412852 [Abstract] [Full Text] [Related]
29. Perturbation of red blood cell flow in small tubes by white blood cells. Thompson TN, La Celle PL, Cokelet GR. Pflugers Arch; 1989 Feb; 413(4):372-7. PubMed ID: 2928089 [Abstract] [Full Text] [Related]
30. The pressure-flow relation in resting rat skeletal muscle perfused with pure erythrocyte suspensions. Sutton DW, Schmid-Schönbein GW. Biorheology; 1995 Feb; 32(1):29-42. PubMed ID: 7548859 [Abstract] [Full Text] [Related]
31. Evaluation of an experimental filter designed for improving the quality of red blood cells (RBCs) during storage by simultaneously removing white blood cells and immunomodulators and improving RBC viscoelasticity and Band 3 proteins. Sowemimo-Coker SO. Transfusion; 2014 Mar; 54(3):592-601. PubMed ID: 23834280 [Abstract] [Full Text] [Related]
32. The flow of blood cell suspensions through 3 microns and 5 microns Nuclepore membranes: a comparison of kinetic analysis with scanning electron microscopic examinations. Jones JG, Holland BM, Humphrys J, Wardrop CA. Br J Haematol; 1985 Mar; 59(3):541-6. PubMed ID: 3970865 [Abstract] [Full Text] [Related]
34. Use of Cell Transit Analyser pulse height to study the deformation of erythrocytes in microchannels. Drochon A. Med Eng Phys; 2005 Mar; 27(2):157-65. PubMed ID: 15642511 [Abstract] [Full Text] [Related]
35. Viscoelastic properties of leukocytes. Chien S, Schmid-Schönbein GW, Sung KL, Schmalzer EA, Skalak R. Kroc Found Ser; 1984 Mar; 16():19-51. PubMed ID: 6371192 [Abstract] [Full Text] [Related]
36. Altered red and white blood cell rheology in type II diabetes. Ernst E, Matrai A. Diabetes; 1986 Dec; 35(12):1412-5. PubMed ID: 3770316 [Abstract] [Full Text] [Related]
37. A flow cytometric method for determination of white cell subpopulations in filtered red cells. Al EJ, Visser SC, Prins HK, Pietersz RN, Reesink HW, Huisman JG. Transfusion; 1991 Dec; 31(9):835-42. PubMed ID: 1755089 [Abstract] [Full Text] [Related]
38. An improved filtration rate for measuring red cell deformability. Sowemimo-Coker SO, Kovacs IB, Turner P, Kirby JD. Biorheology Suppl; 1984 Dec; 1():249-53. PubMed ID: 6591983 [Abstract] [Full Text] [Related]
39. Rheologic and pathophysiologic significance of red cell passage through narrow pores. Nakamura T, Hasegawa S, Shio H, Uyesaka N. Blood Cells; 1994 Dec; 20(1):151-65; discussion 166-8. PubMed ID: 7994058 [Abstract] [Full Text] [Related]
40. Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes. Pal R. J Biomech; 2003 Jul; 36(7):981-9. PubMed ID: 12757807 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]