These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Requirement for reducing agents in deoxyribonucleic acid strand scisson by the purified chromophore of auromomycin. Kappen LS, Napier MA, Goldberg IH, Samy TS. Biochemistry; 1980 Oct 14; 19(21):4780-5. PubMed ID: 7426628 [Abstract] [Full Text] [Related]
4. Strand scission of deoxyribonucleic acid by neocarzinostatin, auromomycin, and bleomycin: studies on base release and nucleotide sequence specificity. Takeshita M, Kappen LS, Grollman AP, Eisenberg M, Goldberg IH. Biochemistry; 1981 Dec 22; 20(26):7599-606. PubMed ID: 6173064 [Abstract] [Full Text] [Related]
5. Contrasts in the actions of protein antibiotics on deoxyribonucleic acid structure and function. Kappen LS, Goldberg IH, Samy TS. Biochemistry; 1979 Nov 13; 18(23):5123-7. PubMed ID: 159069 [Abstract] [Full Text] [Related]
8. DNA breakage activity of the methanol extract of auromomycin. Kalvin DM, Huang CH, Lischwe MA, Peters EH, Prestayko AW, Crooke ST. Cancer Chemother Pharmacol; 1981 Nov 13; 7(1):41-50. PubMed ID: 7340987 [Abstract] [Full Text] [Related]
9. DNA strand scission in vivo and in vitro by auromomycin. Suzuki H, Nishimura T, Tanaka N. Cancer Res; 1979 Jul 13; 39(7 Pt 1):2787-91. PubMed ID: 445483 [Abstract] [Full Text] [Related]
10. Role of pronase-resistant peptide segments of the antitumor protein antibiotics, auromomycin and macromomycin, in stabilizing cytocidal activity of the chromophore moieties to carcinoma cells. Miwa N, Mizuno S, Okamoto S. J Antibiot (Tokyo); 1983 Jun 13; 36(6):721-7. PubMed ID: 6307961 [Abstract] [Full Text] [Related]
11. Stabilization of neocarzinostatin nonprotein chromophore activity by interaction with apoprotein and with HeLa cells. Kappen LS, Goldberg IH. Biochemistry; 1980 Oct 14; 19(21):4786-90. PubMed ID: 6448635 [Abstract] [Full Text] [Related]
12. Characterization of auromomycin-resistant hamster cell mutants that display a multidrug resistance phenotype. Rauscher FJ, Beerman TA, Baker RM. Mol Pharmacol; 1990 Aug 14; 38(2):198-206. PubMed ID: 2143555 [Abstract] [Full Text] [Related]
13. DNA strand scission of methanol-extracted chromophores of macromomycin and auromomycin. Naoi N, Kumada Y, Yamashita T, Takeuchi T, Umezawa H. J Antibiot (Tokyo); 1982 Jul 14; 35(7):934-6. PubMed ID: 7174544 [No Abstract] [Full Text] [Related]
14. Differential cytotoxicity to human lung normal diploid, virus-transformed and carcinoma cells by the antitumor antibiotics, auromomycin and macromomycin, and their non-protein chromophores. Miwa N, Mizuno S, Okamoto S. J Antibiot (Tokyo); 1983 Jun 14; 36(6):715-20. PubMed ID: 6307960 [Abstract] [Full Text] [Related]
15. The in vitro interaction of naphthyridinomycin with deoxyribonucleic acids. Zmijewski MJ, Miller-Hatch K, Mikolajczak M. Chem Biol Interact; 1985 Jan 14; 52(3):361-75. PubMed ID: 3971473 [Abstract] [Full Text] [Related]
16. Purification and mechanism of action of macromomycin. Sawyer TH, Prestayko AW, Crooke ST. Cancer Res; 1979 Apr 14; 39(4):1180-4. PubMed ID: 421201 [Abstract] [Full Text] [Related]
17. Competition between anaerobic covalent linkage of neocarzinostatin chromophore to deoxyribose in DNA and oxygen-dependent strand breakage and base release. Povirk LF, Goldberg IH. Biochemistry; 1984 Dec 18; 23(26):6304-11. PubMed ID: 6241478 [Abstract] [Full Text] [Related]
18. Experimental pharmacology of auromomycin in L1210 tumor cells in vitro and in vivo. Samy TS, Siegel PJ, Hopper WE, Krishan A. Cancer Res; 1984 Aug 18; 44(8):3202-7. PubMed ID: 6589039 [Abstract] [Full Text] [Related]