These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


169 related items for PubMed ID: 6874637

  • 1. Involvement of cytochromes and a flavoprotein in hydrogen oxidation in Rhizobium japonicum bacteroids.
    O'Brian MR, Maier RJ.
    J Bacteriol; 1983 Aug; 155(2):481-7. PubMed ID: 6874637
    [Abstract] [Full Text] [Related]

  • 2. Electron transport components involved in hydrogen oxidation in free-living Rhizobium japonicum.
    O'Brian MR, Maier RJ.
    J Bacteriol; 1982 Oct; 152(1):422-30. PubMed ID: 6288665
    [Abstract] [Full Text] [Related]

  • 3. Hydrogen-oxidizing electron transport components in nitrogen-fixing Azotobacter vinelandii.
    Wong TY, Maier RJ.
    J Bacteriol; 1984 Jul; 159(1):348-52. PubMed ID: 6735984
    [Abstract] [Full Text] [Related]

  • 4. Expression of cytochrome o in hydrogen uptake constitutive mutants of Rhizobium japonicum.
    O'Brian MR, Maier RJ.
    J Bacteriol; 1985 Feb; 161(2):507-14. PubMed ID: 3968033
    [Abstract] [Full Text] [Related]

  • 5. Carriers in electron transport from molecular hydrogen to oxygen in Rhizobium japonicum bacteroids.
    Eisbrenner G, Evans HJ.
    J Bacteriol; 1982 Mar; 149(3):1005-12. PubMed ID: 6277845
    [Abstract] [Full Text] [Related]

  • 6. Role of ubiquinone in hydrogen-dependent electron transport in Rhizobium japonicum.
    O'Brian MR, Maier RJ.
    J Bacteriol; 1985 Feb; 161(2):775-7. PubMed ID: 3968040
    [Abstract] [Full Text] [Related]

  • 7. Carbon monoxide-insensitive respiratory chain of Pseudomonas carboxydovorans.
    Cypionka H, Meyer O.
    J Bacteriol; 1983 Dec; 156(3):1178-87. PubMed ID: 6315679
    [Abstract] [Full Text] [Related]

  • 8. Oxidation of reduced nicotinamide adenine dinucleotide by particles from Mycobacterium lepraemurium.
    Kato L, Ishaque M.
    Cytobios; 1975 Dec; 12(45):31-43. PubMed ID: 170040
    [Abstract] [Full Text] [Related]

  • 9. The electron transport chain of Rhizobium trifolii.
    de Hollander JA, Stouthamer AH.
    Eur J Biochem; 1980 Oct; 111(2):473-8. PubMed ID: 7460910
    [Abstract] [Full Text] [Related]

  • 10. Terminal electron transport in Treponema pallidum.
    Lysko PG, Cox CD.
    Infect Immun; 1977 Jun; 16(3):885-90. PubMed ID: 197010
    [Abstract] [Full Text] [Related]

  • 11. Differences in brain cytochrome responses to carbon monoxide and cyanide in vivo.
    Piantadosi CA, Sylvia AL, Jöbsis-Vandervliet FF.
    J Appl Physiol (1985); 1987 Mar; 62(3):1277-84. PubMed ID: 3032887
    [Abstract] [Full Text] [Related]

  • 12. Electron transport systems of Rhizobium japonicum. I. Haemoprotein P-450, other CO-reactive pigments, cytochromes and oxidases in bacteroids from N2-fixing root nodules.
    Appleby CA.
    Biochim Biophys Acta; 1969 Jan 14; 172(1):71-87. PubMed ID: 4974059
    [No Abstract] [Full Text] [Related]

  • 13. The pathway of electron flow through ubiquinol:cytochrome c oxidoreductase in the respiratory chain. Evidence from inhibition studies for a modified 'Q cycle'.
    Halestrap AP.
    Biochem J; 1982 Apr 15; 204(1):49-59. PubMed ID: 6288019
    [Abstract] [Full Text] [Related]

  • 14. Cyanide and carbon monoxide binding to the reduced form of cytochrome bo from Escherichia coli.
    Mitchell R, Moody AJ, Rich PR.
    Biochemistry; 1995 Jun 13; 34(23):7576-85. PubMed ID: 7779803
    [Abstract] [Full Text] [Related]

  • 15. Reconstitution of H2 oxidation activity from H2 uptake-negative mutants of Rhizobium japonicum bacteroids.
    Maier RJ, Mutaftschiev S.
    J Biol Chem; 1982 Feb 25; 257(4):2092-6. PubMed ID: 7056758
    [Abstract] [Full Text] [Related]

  • 16. The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3- reductase of Rhodobacter capsulatus and resolution of a soluble NO3(-)-reductase--cytochrome-c552 redox complex.
    Richardson DJ, McEwan AG, Page MD, Jackson JB, Ferguson SJ.
    Eur J Biochem; 1990 Nov 26; 194(1):263-70. PubMed ID: 2174775
    [Abstract] [Full Text] [Related]

  • 17. Investigation of the H2-oxidizing activities of Alcaligenes eutrophus H16 membranes with artificial electron acceptors, respiratory inhibitors and redox-spectroscopic procedures.
    Podzuweit HG, Arp DJ, Schlegel HG, Schneider K.
    Biochimie; 1986 Jan 26; 68(1):103-11. PubMed ID: 3089303
    [Abstract] [Full Text] [Related]

  • 18. Hydrogen-ubiquinone oxidoreductase activity by the Bradyrhizobium japonicum membrane-bound hydrogenase.
    Ferber DM, Maier RJ.
    FEMS Microbiol Lett; 1993 Jul 01; 110(3):257-64. PubMed ID: 8354459
    [Abstract] [Full Text] [Related]

  • 19. Redox state of respiratory chain enzymes and potassium transport in silkworm mid-gut.
    Mandel LJ, Moffett DF, Jöbsis FF.
    Biochim Biophys Acta; 1975 Nov 11; 408(2):123-34. PubMed ID: 172128
    [Abstract] [Full Text] [Related]

  • 20. Respiratory mechanisms in the Flexibacteriaceae: terminal oxidase systems of Saprospira grandis and Vitreoscilla species.
    Dietrich WE, Biggins J.
    J Bacteriol; 1971 Mar 11; 105(3):1083-9. PubMed ID: 4323292
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.